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Backward induction is a widely accepted principle for predicting behavior in sequential games. In the classic
example of the “centipede game,” however, players frequently violate this principle. An alternative is a

“dynamic level-k” model, where players choose a rule from a rule hierarchy. The rule hierarchy is iteratively
defined such that the level-k rule is a best response to the level-�k−1� rule, and the level-� rule corresponds to
backward induction. Players choose rules based on their best guesses of others’ rules and use historical plays
to improve their guesses. The model captures two systematic violations of backward induction in centipede
games, limited induction and repetition unraveling. Because the dynamic level-k model always converges to
backward induction over repetition, the former can be considered to be a tracing procedure for the latter. We
also examine the generalizability of the dynamic level-k model by applying it to explain systematic violations
of backward induction in sequential bargaining games. We show that the same model is capable of capturing
these violations in two separate bargaining experiments.
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1. Introduction
In many settings, players interact with one another
over multiple stages. Researchers often model these
settings as sequential games and invoke the prin-
ciple of backward induction to predict behavior at
each stage of these games. Under backward induction,
players reason backward, replace each subgame of a
sequential game by its optimal payoff, always choose
optimally within each subgame, and use this iterative
process to determine a sequence of optimal actions.
Each player follows this procedure betting on others
doing the same. This “divide and conquer” algorithm
simplifies the game analysis and generates a sharp
prediction of game play for any sequential game.

However, subjects who are motivated by sub-
stantial economic incentives often violate backward
induction even in simple sequential games. One such
example is the “centipede” game (Rosenthal 1981)
(see the top panel of Figure 1). In this game, there are
two players (A and B) and four decision stages. Play-
ers are endowed with an initial pot of $5. In Stage I,
player A has the property rights to the pot. She can
choose either to end the game by taking 80% of the
pot (and leaving the remaining 20% to player B) or
to allow the pot to double by passing the property
rights to player B. In Stage II, it is now player B’s
turn to make a similar decision. Player B must now

decide whether to end the game by taking 80% of $10
or to let the pot double again by passing the property
rights back to player A. This social exchange process
leads to large financial gains as long as both play-
ers surrender their property rights at each stage. At
Stage IV, player B can either take 80% of $40 (i.e., $32)
or pass and be left with 20% of a pot of $80 (i.e., $16).

Backward induction generates a clear prediction for
this game by starting the analysis in the last stage.
Player B should take at Stage IV because 80% of $40
(i.e., $32) is larger than 20% of $80 (i.e., $16). Antic-
ipating this choice and replacing this subgame with
the corresponding payoff vector, player A should take
at Stage III because 80% of $20 (i.e., $16) is larger than
20% of $40 (i.e., $8). Continuing with this line of logic,
backward induction makes a surprising prediction:
player A always takes immediately in Stage I and out-
come 4 occurs with probability 1 (i.e., outcomes 0–3
will not occur). Moreover, the same prediction holds
even if the game continues for more stages and with
more dramatic financial gains. For example, the bot-
tom panel of Figure 1 shows the same game with six
stages, and the same sharp prediction holds (i.e., out-
come 6 occurs with probability 1). Introspection sug-
gests that this prediction is unlikely to occur. This is
so because as long as the game proceeds to Stage III,
both players would have earned more money than
the backward induction outcome.
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Figure 1 Four-Stage (Top) and Six-Stage (Bottom) Centipede Games
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Indeed, very few subjects (about 6%) chose to take
immediately in experimental centipede games con-
ducted by McKelvey and Palfrey (1992). Many sub-
jects instead chose to take in the intermediate stages,
approximately halfway through the games (i.e., lead-
ing to outcomes 2 and 3 in four-stage games and
outcomes 3 and 4 in six-stage games). Clearly, this
pattern of behavior runs counter to backward induc-
tion. Moreover, the observed behavior frequently led
to higher cash earnings for all subjects. In contrast,
those who obeyed backward induction by taking
immediately received a substantially lower payoff.

There are two stylized facts concerning the vio-
lations of backward induction. First, players violate
backward induction less in a game with fewer sub-
games (or stages); that is, players’ behaviors devi-
ate less from backward induction in simpler games.
For instance, we observe fewer violations of back-
ward induction in four-stage than in six-stage games
(see Figure 1). We call this behavioral tendency lim-
ited induction. Second, players unravel as they play the
same game repeatedly over multiple rounds; that is,
players’ behaviors converge toward backward induc-
tion over repetition. For instance, we observe fewer
violations of backward induction in the last round
than in the first round of the experimental centipede
games in Figure 1. This behavioral tendency is termed
repetition unraveling. The inability of backward induc-
tion to account for these two empirical stylized facts
poses significant modeling challenges.

This paper proposes an alternative to backward
induction, a “dynamic level-k” model, that gener-
alizes backward induction and accounts for lim-
ited induction and repetition unraveling in centipede
games. In the dynamic level-k model, players choose
a level-k rule, Lk (k= 0�1�2�3� � � � �), from a set of iter-
atively defined rules. Each rule prescribes an action

at each subgame. The rule hierarchy is defined such
that the level-k rule best responds to the level-�k− 1�
rule, and the level-� rule corresponds to backward
induction.1 This iterative definition of a rule hierarchy
is usually applied to one-shot games (e.g., Stahl and
Wilson 1995; Nagel 1995; Stahl 1996; Ho et al. 1998;
Costa-Gomes et al. 2001; Camerer et al. 2004; Costa-
Gomes and Crawford 2006; Crawford and Iriberri
2007a, b), but we extend the approach to sequential
games. Players choose a rule based on their beliefs
of others’ rules, so they essentially are subjective
expected utility maximizers.

Players are heterogeneous in that they have differ-
ent initial guesses of others’ rules and consequently
choose different initial rules. The distribution of the
initial guesses is assumed to follow any arbitrary dis-
crete distribution. These initial guesses are updated
according to Bayes’ rule based on game history. Con-
sequently, players develop more accurate guess of
others’ rules and may choose different rules over
time. In this way, unlike static level-k models, our
model is made dynamic by incorporating elements of
belief-based learning models.

We prove that the dynamic level-k model can ac-
count for limited induction and repetition unravel-
ing properties in centipede games. Consequently, our
model can explain why subjects choose to pass in ear-
lier stages in these games. Such behavior is considered
paradoxical under backward induction but is consis-
tent with the dynamic level-k model. In addition, the

1 Whereas Nagel (1995), Ho et al. (1998), Costa-Gomes et al. (2001),
Costa-Gomes and Crawford (2006), and Crawford and Iriberri
(2007a, b) assume that the level-k rule only best responds to the
level-�k−1� rule, Stahl and Wilson (1995), Stahl (1996), and Camerer
et al. (2004) assume that level-k rule best responds to all lower-level
rules. This paper adopts the former approach.
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dynamic level-k model is able to capture the empirical
stylized fact that behavior will eventually converge
to backward induction over repetition, and hence the
former can be considered as a tracing procedure for
the latter.

We also fit our model using experimental data on
centipede games from McKelvey and Palfrey (1992)
and find that our model fits the data significantly
better than backward induction and the static level-k
model, where no dynamics is allowed. In addition,
we rule out two alternative explanations, including
the reputation-based model of Kreps et al. (1982) and
a model allowing for inequity aversion (Fehr and
Schmidt 1999). Overall, it appears that the dynamic
level-k model can be an empirical alternative to back-
ward induction for predicting behaviors in centipede
games.

To investigate the generalizability of the dynamic
level-k model to other sequential games, we investi-
gate whether the same dynamic level-k model can be
used to explain violations of backward induction in
sequential bargaining games (Stahl 1972, Rubinstein
1982). We find that the same model can explain both
the initial offers and the shift in offers over time
in two separate experiments. Hence, the dynamic
level-k model has applicability beyond the centipede
games.

The rest of this paper is organized as follows. Sec-
tion 2 discusses the backward induction principle
and its violations. Section 3 formulates the dynamic
level-k model and applies it to explain paradoxi-
cal behaviors in centipede games. Section 4 fits the
dynamic level-k model to data from experimental cen-
tipede games and rules out two alternative explana-
tions. Section 5 applies the dynamic level-k model to
explain violations of backward induction in sequen-
tial bargaining games. Section 6 concludes.

2. Violations of Backward Induction
Backward induction uses an iterative process to
determine an optimal action at each subgame of a
sequential game. The predictive success of this iter-
ative reasoning process hinges on players’ complete
confidence in others applying the same logic in arriv-
ing at the backward induction outcomes (Aumann
1995). If players have doubts about others applying
this same reasoning process, it may be in their best
interest to deviate from the prescription of backward
induction. Indeed, subjects do, and profitably so in
many experiments.

If player i chooses a behavioral rule Li that is dif-
ferent from backward induction (L�), one would like
to develop a formal measure to quantify this devia-
tion. Consider a centipede game GS with S subgames.
We can define the deviation for a set of behavioral

rules Li 4i = A1B5, one for each player, in centipede
game GS as

�4LA1LB1GS5=
1
S

S
∑

s=1

Ds4L
i1L�51 (1)

where Ds4L
i1L�5 is 1 if player i chooses an action

at subgame s that is different from the prescription
of backward induction and 0 otherwise. Note that
the measure varies from 0 to 1, where 0 indicates
that players’ actions perfectly match the predictions of
backward induction, and 1 indicates that none of the
players’ actions agree with the predictions of back-
ward induction.

Let us illustrate the deviation measure using a
four-stage centipede game. Let the behavioral rules
adopted by player A and B be LA = 8P1−1T 1−9 and
LB = 8−1P1−1T 9, respectively (that is, player A will
pass in Stage I and take in Stage III, and player B will
pass in Stage II and take in Stage IV). Then the game
will end in Stage III (i.e., outcome 2). The deviation
will be � 4LA1LB1G5 = 41/4561 + 1 + 0 + 07 = 1/20 Sim-
ilarly, if LA = 8P1−1T 1−9 and LB = 8−1T 1−1T 9, then
the game will end in Stage II (i.e., outcome 3). This
gives �4LA1LB1G5 = 41/4561 + 0 + 0 + 07 = 1/4, which
is smaller. Note that the latter behavioral rules are
closer to backward induction than the former behav-
ioral rules.

Using the above deviation measure, we can for-
mally state the two systematic violations of backward
induction as follows:

1. Limited induction: Consider two centipede games
G and G′, where G′ is a proper subgame of G. The
deviation from backward induction is equal or larger
in G than in G′; that is, the deviation from backward
induction increases in the number of stages or sub-
games S. Formally, for two players who adopt the
same set of behavioral rules (Li1 i =A1B) in games G
and G′, we have �4LA1LB1G5 ≥ �4LA1LB1G′5. Conse-
quently, a good model must predict a larger deviation
in G than in G′ to be behaviorally plausible.

2. Repetition unraveling: If a game G is played
repeatedly, the deviation from backward induction at
the tth round converges to zero as t → �; that is,
repetition unraveling implies �4LA4t51LB4t51G5→ 0 as
t → �. Therefore, game outcomes will eventually be
consistent with backward induction after sufficiently
many repetitions.

Let us illustrate limited induction and repetition
unraveling using data from McKelvey and Palfrey
(1992). These authors conducted an experiment to
study behavior in four-stage and six-stage centipede
games. Each subject was assigned to one of these
games and played the same game in the same role
9 or 10 times. For each observed outcome in a game
play, we can compute the deviation from backward
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Figure 2 Deviations from Backward Induction in the Four-Stage and
Six-Stage Centipede Games
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Source. Data from McKelvey and Palfrey (1992).

induction using Equation (1). Because subjects did
not indicate what they would have chosen in every
stage (i.e., data were not collected using the strategy
method), we did not observe what the subjects would
have done in subsequent stages if the game ended
in an earlier stage. In computing the deviation, we
assume that subjects always choose to take in stages
beyond where the game ends. Therefore, our measure
is a conservative estimate of the deviation from back-
ward induction.

Figure 2 plots the cumulative distributions of devi-
ations from backward induction in the four-stage and
six-stage games respectively. The solid line corre-
sponds to the four-stage game, and the dashed line
corresponds to the six-stage game. The curve for the
six-stage game generally lies to the right of the curve
for the four-stage game except for high deviation val-
ues. A Kolmogorov–Smirnov test shows that there is
a statistically significant difference between the distri-
butions of deviations in the two games. These results
suggest that the limited induction property holds in
this data set.

Figure 3 plots the cumulative distributions of devi-
ations from backward induction in the first and the
final round of the four-stage game. The solid line
corresponds to the first round, and the dashed line
corresponds to the final round of game plays (simi-
lar results occur for the six-stage game). As shown,
the curve for the first round lies to the right of the
curve for the final round. A Kolmogorov–Smirnov
test shows that there is a statistically significant dif-
ference between the distributions of deviations in the
first and last rounds. These results suggest that the
deviation from backward induction decreases over
time.

Figure 3 Deviations from Backward Induction in the First and Last
Round of the Four-Stage Centipede Game
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We shall use the deviation measure to establish the
main theoretical results below. Specifically, we shall
show that the deviation under our dynamic level-k
model is smaller in simpler games (i.e., the lim-
ited induction property holds) and converges to zero
over repetition (i.e., the repetition unraveling prop-
erty holds).

3. Dynamic Level-k Model
3.1. Model Setup

3.1.1. Rule Hierarchy. We consider a centipede
game that has S subgames. Players are indexed by
i (i = A�B), and subgames by s (s = 1� � � � � S). Play-
ers are assumed to adopt a rule that prescribes an
action at each subgame s. For example, in the cen-
tipede game studied by McKelvey and Palfrey (1992),
S is either 4 or 6 and a rule player A adopts in a
four-stage game can be LA = �P�−�T �−�, which spec-
ifies that the player will pass in Stage I and take
in Stage III. Players choose a rule from a rule hier-
archy. Rules are denoted by Lk (k = 0�1�2�3� � � � �).
The L0 rule prescribes naive or uniform randomiza-
tion among all available actions in every subgame s
and all other higher-level rules, L1�L2� � � � � are gen-
erated from iterative best responses. Specifically, the
Lk (k ≥ 1) rule is a best response to the Lk−1 rule
at every subgame, including those subgames that may
never be reached;2 that is, to determine a player’s
decisions under rule Lk, we first assume that the other

2 Note that level-k can best respond to level-�k− 1� and yet “pass”
at later nodes because once the former chooses to “take” at a
node the latter can choose whatever action at later nodes because
those nodes will never be reached. To keep the analysis simple, we
impose the plausible assumption that level-k will best respond to
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Table 1 Rule Hierarchy in Four-Stage Centipede Games

Level rule Player A Player B

L0 8R1−1 R1−9 8−1 R1−1 R9

L1 8P 1−1 P 1−9 8−1 P 1−1 T 9

L2 8P 1−1 T 1−9 8−1 P 1−1 T 9

L3 8P 1−1 T 1−9 8−1 T 1−1 T 9

L4 8T 1−1 T 1−9 8−1 T 1−1 T 9

Notes. R, randomize; P , pass; T , take.

Table 2 Rule Hierarchy in Six-Stage Centipede Games

Level rule Player A Player B

L0 8R1−1 R1−1 R1−9 8−1 R1−1 R1−1 R9

L1 8P 1−1 P 1−1 P 1−9 8−1 P 1−1 P 1−1 T 9

L2 8P 1−1 P 1−1 T 1−9 8−1 P 1−1 P 1−1 T 9

L3 8P 1−1 P 1−1 T 1−9 8−1 P 1−1 T 1−1 T 9

L4 8P 1−1 T 1−1 T 1−9 8−1 P 1−1 T 1−1 T 9

L5 8P 1−1 T 1−1 T 1−9 8−1 T 1−1 T 1−1 T 9

L6 8T 1−1 T 1−1 T 1−9 8−1 T 1−1 T 1−1 T 9

Notes. R, randomize; P , pass; T , take.

player follows rule Lk−1 and then solve the single-
player dynamic program that results. In the limit, L�

corresponds to backward induction. Tables 1 and 2
show the respective rule hierarchy in four-stage and
six-stage centipede games. In Table 1, for example,
L4 for player A is 8T 1−1T 1−9. Similarly, in Table 2,
L6 for player A is 8T 1−1T 1−1T 1−9. Note that in both
cases each rule requires that player A takes in all sub-
games after Stage I (i.e., “take” in Stage III in four-
stage centipede games, and “take” in Stages III and
IV in six-stage centiepde games) even though those
nodes will never be reached.

Under the dynamic level-k rule hierarchy, the devi-
ation from backward induction (see Equation (1)) is
smaller if player i adopts a higher-level rule (while
others keep their rule at the same level). In fact,
ceteris paribus, the deviation from backward induc-
tion is (weakly) monotonically decreasing in k. In
other words, the level of a player’s rule captures its
closeness to backward induction. Note that Lk pre-
scribes the same behavior as backward induction in
any centipede game with k or fewer subgames. In
this regard, Lk can be viewed as a limited backward
induction rule that only works for simpler centipede
games.

If it is common knowledge that everyone em-
ploys backward induction, all players will indeed
choose L�. However, if players have doubts about
others’ use of L�, it may not be in their best inter-
est to apply the same rule. As a result, it is natural

level-4k− 15 in all subgames of the subgame whose initial node is
where level-4k− 15 first chooses “take.” We thank a knowledgeable
reviewer for suggesting to us to make this assumption explicit.

for players to form beliefs3 about which less sophis-
ticated rules others will adopt and then determine
a best response to maximize their expected payoffs.4

Put differently, players are subjective expected utility
maximizers in the dynamic level-k models.

3.1.2. Belief Updating. In a typical laboratory ex-
periment, players frequently play the same game
repeatedly. After each repetition, players observe the
rules used by their opponents and update their beliefs
by tracking the frequencies of rules played by oppo-
nents in the past. Let player i’s rule counts at the end
of the tth round be N i4t5 = 4N i

04t51 0 0 0 1N
i
S4t55, where

N i
k4t5 is the cumulative count of rule Lk that has been

used by opponents at the end of round t (Camerer
and Ho 1999, Ho et al. 2007). Note that for a cen-
tipede game with S stages or subgames, all rules of
level S or higher will prescribe the same action at each
subgame, and hence we pool them together and col-
lectively call them LS . Given these rule counts, player
i forms a belief Bi4t5= 4Bi

04t51 0 0 0 1B
i
S4t55, where

Bi
k4t5=

N i
k4t5

∑S
k′=0 N

i
k′4t5

3

Bi
k4t5 is player i’s belief of the probability that her

opponent will play Lk in round t + 1. The updating
equation of the cumulative count at the end of round
t is given by

N i
k4t5=N i

k4t − 15+ I4k1 t5 · 11 ∀k1 (2)

where I4k1 t5 = 1 if player i’s opponent adopts rule
Lk in round t and 0 otherwise. Therefore, players
update their beliefs based on the history of game
plays. Note that this belief updating process is simi-
lar to the standard fictitious play model (Brown 1951).
Furthermore, the updating process is consistent with

3 There is a debate about whether players actually form beliefs and
best respond to them, or whether they simply exhibit behavior “as
if” they were forming beliefs. Although we adopt the former view
(because it is so central to game theoretic reasoning), there appears
to be some evidence to support the latter. For example, in experi-
mental games, Costa-Gomes and Weizsacker (2008) found that sub-
jects often fail to best respond to their own beliefs, and Charness
and Levin (2009) found that subjects are unable to update beliefs
“correctly,” i.e., perform Bayesian updating.
4 Subjects’ beliefs may depend on their knowledge of their oppo-
nents’ level of sophistication. Players who play against opponents
who are known to be sophisticated will adopt a higher-level rule.
For example, Palacios-Huerta and Volij (2009) showed that many
chess players in centipede games choose to pass when playing
against student subjects, but choose to take immediately when
playing against other equally sophisticated chess players. Levitt
et al. (2011), however, found the reverse result: chess players choose
to pass when they play against each other. This empirical discrep-
ancy could be due to the difference in players’ perception of their
opponents’ level of sophistication.
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Bayesian updating involving a multinomial distribu-
tion with a Dirichlet prior (Fudenberg and Levine
1998, Camerer and Ho 1999). As a consequence of the
updating process, players may adopt different best-
response rules over game repetitions t.5

Player i chooses the optimal rule Lk∗ in round t + 1
from the rule hierarchy 8L01L11 0 0 0 1LS9 based on belief
Bi4t5 to maximize expected payoffs. Let aks be the
specified action of rule Lk at subgame s. Player i
believes that action ak′s will be chosen with probabil-
ity Bi

k′4t5 by the opponent. Hence, the optimal rule
chosen by player i is

k∗
= arg max

k=11 0001 S

S
∑

s=1

{ S
∑

k′=1

Bi
k′4t5 ·� i

s4aks1 ak′s5

}

1 (3)

where � i
s4aks1 ak′s5 is player i’s payoff at subgame s

if i chooses rule Lk and the opponent chooses rule Lk′

(cf. Camerer et al. 2004).
Note that we model learning across repetitions but

not across stages within a game. This is clearly an
approximation. For a more general model, a player
could potentially update her belief about the oppo-
nent’ rule across stages as the game unfolds. In the
centipede game, player B who expects player A to
take immediately will be surprised if the latter passes.
If we incorporate within-round learning, this will lead
player B to put more weights on the lower-level rules
as the game progresses. Nevertheless, we believe that
our simpler model is a good starting point for two
reasons:

1. A player learns when she is surprised by the
opponent’s action. This can occur in two ways. First,

5 The above updating rule assumes that subjects observe rules cho-
sen by opponents. This is possible if the strategy method is used to
elicit subjects’ contingent action at each subgame. When the oppo-
nents’ chosen rules are not observed, the updating process is still
a good approximation because subjects may have a good guess of
their opponents’ chosen rules in most simple games (e.g., centipede
games). More generally, the updating of N i

k4t5 depends on whether
player i adopts a higher- or lower-level rule than her opponent.
If the opponent uses a higher-level rule (e.g., the opponent takes
before the player in the centipede game), then we have, similar to
the above,

N i
k4t5=N i

k4t − 15+ I4k1 t5 · 11

where I4k1 t5 = 1 if opponent adopts an action that is consistent
with Lk in round t and 0 otherwise. If player i adopts a higher-level
rule k∗ (e.g., takes before the opponent in the centipede game), the
player can only infer that the opponent has chosen some rule that is
below k∗. Then we have

N i
k4t5=N i

k4t − 15+ I4k ≤ k∗5 ·
N i

k4t − 15
∑k∗

k′=0 N
i
k′
4t − 15

1

where I4k ≤ k∗5= 1 if k ≤ k∗ and 0 otherwise. This updating process
assigns a belief weight to all lower-level rules that are consistent
with the observed outcome. The weight assigned to each consistent
rule is proportional to its prior belief weight. For this alternative
updating process, the main results (i.e., Theorems 1 and 2) con-
tinue to hold. We use the simpler updating process in our empirical
estimation.

a player is surprised when an opponent takes earlier
than expected. In this case, the game ends immedi-
ately. The above updating process in Equations (2)
and (3) already captures this kind of between-round
learning. Second, a player is surprised when an
opponent unexpectedly passes. However this kind of
within-round learning can only happen to player B
who expects her opponent to take in Stage I but she
passes instead. This is rare because the initial pass in
Stage I will only be considered “unexpected” by very
high-level-rule players (i.e., level 5 or higher in the
four-stage game and level 7 or higher in the six-stage
game in round 1). The estimated fraction of players
who are level 5 or higher is less than 8%, and the esti-
mated fraction of players who are level 7 or higher is
less than 2%.

2. Within-round learning as described above fre-
quently generates prediction that is inconsistent
with the observed behavior. Specifically, within-round
learning tends to make players more likely to pass
after observing a surprising pass by the opponent.
This pattern of behavior runs counter to the observed
data.

3.1.3. Initial Beliefs. We need to determine player
i’s initial belief Bi405. We define N i405 such that
N i

k405= � for some k and 0 otherwise, where the
parameter � captures the strength of the initial belief.
In other words, player i places all the initial weight
� on a particular rule Lk and zero weight on all other
rules. Different players have different guesses about
others’ level of sophistication and hence place the ini-
tial weight on a different k. To capture the hetero-
geneity in players’ initial beliefs of others’ rules, the
dynamic level-k model allows for any arbitrary dis-
crete distribution. Let �4k5 denote the proportion of
players who hold an initial belief that the opponents’
rule is level-k, for k = 01 0 0 0 1 S. For example, a �405
proportion of players initially believe that their oppo-
nents will play L0 and thus choose L1 in round 1. Simi-
larly, a �4k5 proportion of players initially believe that
their opponents will play Lk and thus best respond
with Lk+1.

We should stress that �4k5 has a different interpre-
tation here, compared to other level-thinking mod-
els. For example, �405 represents the proportion of L0
players in the static level-k and cognitive hierarchy
models, but it represents, in our model, the propor-
tion of players who believe that their opponents play
L0 and thus choose L1 themselves. Unlike the static
level-k and cognitive hierarchy models, which capture
heterogeneity in players’ rules, the dynamic level-
k model captures heterogeneity in players’ beliefs
of others’ rules and allows players to always best-
respond to their beliefs. Players can and do change
their rules as a result of changes in their beliefs of
others’ rules in the dynamic level-k model.
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Because all players best respond given their beliefs,
L0 will not be chosen by any player and only occurs
in the minds of the higher-level players. Using a gen-
eral discrete distribution, Costa-Gomes and Crawford
(2006) and Crawford and Iriberri (2007a, b) show
that the estimated proportion of players who adopt
the L0 rule is frequently zero. In agreement with
this finding, our proposed dynamic level-k model
assumes that there are no L0 players. In this way,
the dynamic level-k model is both an empirically val-
idated and theoretically justified model of strategic
behavior.

3.1.4. Comparison with Other Models. The
dynamic level-k model is different from the static
level-k and cognitive hierarchy models in three
fundamental aspects. First, players in our model
are not endowed with a specific thinking type;
that is, players in our model are cognitively capable
of choosing any rule and always choose the rule
level that maximizes their expected payoff. In other
words, players in our model are not constrained by
reasoning ability. Second, players in our model may
be aware of others who adopt higher-level rules than
themselves. In other words, a player who chooses Lk

may recognize that there are others who choose Lk+1
or higher but still prefers to choose Lk because there
is a large majority of players who are Lk−1 or below.
On the other hand, the static level-k and cognitive
hierarchy (CH) models assume that players always
believe they are the highest-level thinkers (i.e., the
opponents are always of a lower-level rule). Third,
unlike the static level-k and CH models, players in
the dynamic level-k model may change their rules
as they collect more information and update beliefs
about others. Specifically, a player who interacts
with opponents of higher-level rules may advance
to a higher rule. Similarly, a players who interacts
with opponents of lower-level rules may switch to a
lower-level rule to maximize their expected payoffs.

3.1.5. Summary. In summary, the dynamic level-
k model is characterized by the parameter � and the
distribution �4 · 5. The parameter � is the strength
of the initial belief, which determines players’ sen-
sitivity to game history. A higher � implies a lower
level of sensitity to game history. The distribution
�4 · 5 captures the degree of heterogeneity in play-
ers’ initial beliefs. The distribution �4 · 5 is likely to
depend on the sophistication of the player popula-
tion. The dynamic level-k model nests several well-
known special cases. When �4�5 = 1, the model
reduces to backward induction. If �= �, players have
a stubborn prior and never respond to game his-
tory. This reduces our model to a variant of the static
level-k model. Consequently, we can empirically test
whether these special cases are good approximations

of behavior using the standard generalized likelihood
principle.

3.2. Theoretical Implications
We now apply the dynamic level-k model to explain
violations of backward induction in centipede games.
McKelvey and Palfrey (1992) studied centipede games
with an even number of stages (e.g., four and
six stages). Hence, we focus on centipede games
that have an even number of stages. In these
games, under the L0 rule, players randomly choose
between passing and taking with equal probabili-
ties at every stage. A player who believes her oppo-
nent uses L0 will maximize her payoff by adopting
L1 = 8P11P21 0 0 0 1 PS−11TS9. (Note that odd-numbered
components apply to player A, and even-numbered
components apply to player B. See also Tables 1
and 2.) By definition, Lk best responds to Lk−1 so that
Lk = 8P11 0 0 0 1 PS−k1TS−k+11 0 0 0 1 TS9. Therefore, in a cen-
tipede game with S stages, LS = LS+1 = · · · = L�. Put
differently, all rules LS or higher prescribe the same
action at each stage as L� (the backward induction
rule). Consequently, we pool all these higher-level
rules together and collectively call them LS .

Players choose rules from the rule hierarchy Lk (k =

01112131 0 0 0 1). Let Li4t5 be the rule of player i (where
i = A1B) in round t. Then �4LA4151LB4151G5 is the
deviation from backward induction L� in game G
in the first round. For example, if players A and B
both play L2 in the first round, the deviation is
1/2 in a four-stage and 2/3 in a six-stage centipede
game; that is, we have �4LA

2 4151L
B
2 4151G65 = 2/3 >

�4LA
2 4151L

A
2 4151G45= 1/2, where G4 and G6 denote the

four-stage and six-stage games, respectively. In gen-
eral, we have the following theorem:

Theorem 1. In centipede games, the dynamic level-k
model implies that the limited induction property is always
satisfied. Formally, if each player holds the same ini-
tial beliefs in both games GS and GS′ with S < S ′,
then the expected deviation from backward induction in
GS , �4LA4151LB4151GS5, is always smaller than in GS′ ,
�4LA4151LB4151GS′5.

Proof. See Appendix A.

Theorem 1 suggests that the dynamic level-k model
gives rise to a smaller deviation from backward
induction in a centipede game with a smaller num-
ber of stages. This result is consistent with the data
presented in Figure 2. Appendix A gives the detailed
proof but the basic idea of the proof is outlined here.
Given any combination of rule levels LA415 and LB415
for the players, let KA415= 2 · �LA415/2� and KB415= 2 ·

�LB415/2�− 1. The outcome is identical in both games
(counting from the last stage) (see Figure 1). Specifi-
cally, the game outcome is z= max8KA4151KB4159, and
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the number of actions that are inconsistent with back-
ward induction is S − z. As a consequence, G6 has a
larger deviation than G4 (see Equation (1)). Because
the initial distribution of beliefs is the same in both
games (i.e., having the same �4 · 55, the initial expected
deviation must be higher in G6.

Figure 3 shows that the expected deviation from
backward induction becomes smaller over time. There
is a question of whether this trend will persist and
eventually unravel to backward induction outcome.
The following theorem formally states that this is
indeed the case for the dynamic level-k model.

Theorem 2. For a centipede game with S stages, if �
is finite, the dynamic level-k model implies that the rep-
etition unraveling property is always satisfied. Formally,
the deviation from backward induction �4LA4t51LB4t51G5
converges to zero and all players will choose LS = L� as
t → �; that is, players will eventually take in every stage.

Proof. See Appendix A.

Theorem 2 states that the dynamic level-k model
satisfies the repetition unraveling property in cen-
tipede games.6 The basic idea of the proof is out-
lined here. No players choose L0. As a consequence, L1
players will learn that other players are L1 or higher.
Using our notation, this means that Bi

04t5 will decline
over time and the speed of decline depends on the
initial belief weight �. For a specific �, there is a corre-
sponding number of rounds after which all L1 players
will move up to L2 or higher. No players will then
choose L0 and L1. In the same way, L2 players will
learn that other players are L2 or higher and will even-
tually move to L3 or higher. Consequently, we will see
a “domino” phenomenon whereby lower-level play-
ers will successively disappear from the population.
In this regard, players believe that others become
more sophisticated over time and correspondingly do

6 Fey et al. (1996) studied a constant-sum version of the centipede
game in which the total payoff to the two players remains constant
over stages. The players are initially endowed with two equal piles
of cash. Similar to the regular centipede game, each player takes
turn to either take or pass. Each time a player passes, one-fourth
of the smaller pile is transferred to the larger pile. When a players
takes, she receives the larger pile of the cash, and the game ends.
The backward induction principle predicts that players should take
immediately in the first stage in this game. However, subjects did
not take immediately, but unraveled toward the backward induc-
tion outcome over time. Applying the dynamic level-k model to
this centipede game, we obtain the following rule hierarchy: L0

prescribes random choice, L1 prescribes passing in the first stage
and taking in every other stage, and L2 and above corresponds
to backward induction (i.e., taking in every stage). Given this rule
hierarchy, the same reasoning as in Theorem 2 can be used to show
that the repetition unraveling property holds. This suggests that
the dynamic level-k model can also be used to explain the learning
pattern in constant-sum centipede games. We thank a reviewer for
pointing this out.

so themselves. In the limit, all players converge to LS

(and the learning process ceases).
The proof also reveals an interesting insight. The

number of repetitions it takes for Lk to disappear is
increasing in k. For example, when � = 1, it takes
12 repetitions for L1 to disappear and another 50 rep-
etitions for L2 to disappear. Each higher-level rule
takes an exponentially longer time to be eliminated
from the population.7 This result suggests that rep-
etition unraveling occurs rather slowly in centipede
games. In the experiments conducted by McKelvey
and Palfrey (1992), there are only 10 game rounds,
and hence we observe only a slight convergence
toward backward induction. In §4, we fit the dynamic
level-k model to yield �< 1 (0016 for Caltech subjects
and 0080 for Pasadena Community College (PCC) sub-
jects), and we find that only the L1 rule disappears in
their data set.

Theorem 2 above shows that all players will choose
LS = L� as t → �. However, during the transient
phase, it is possible for players to switch from Lk to
Lk′ (k′ < k) if they repeatedly encounter opponents
of lower-level rules. This phenomenon is occasionally
observed in the data and can be accommodated by
our model.

We have proven the limited induction and repe-
tition unraveling properties of the dynamic level-k
model by adopting a commonly used specification
for L0 that prescribes uniform randomization. This
same specification is used in prior level-thinking
and cognitive hierarchy models (e.g., Ho et al. 2004,
Costa-Gomes and Crawford 2006, Crawford and
Iriberri 2007b). From a modeling standpoint, this
level-0 rule represents a natural starting point from
which we can iteratively derive more sophisticated
rules. However, it is worthwhile to ask whether the
above results are robust to alternative specifications
of L0. For centipede games, a possible alternative
is pure altruism behavior, i.e., L0 players always
pass in every stage. In fact, McKelvey and Palfrey
(1992) assumed there is a proportion of such altru-
istic players to reconcile deviations of their data
from standard equilibrium models. To investigate the
robustness of our results, we investigate an alterna-
tive rule hierarchy generated from L0 exhibiting pure
altruism (i.e., L0 = 8P11P21 0 0 0 1 PS−11PS95. Interestingly,
we find that this alternative L0 generates an identi-
cal rule hierarchy Lk 4k ≥ 15; that is, for k ≥ 1, Lk =

8P11 0 0 0 1 PS−k1TS−k+11 0 0 0 1 TS9 as obtained above. Recall
that in the dynamic level-k model, although L0 may
be part of players’ beliefs, only rules L1 and higher

7 In our model, the cumulative rule counts N i
k4t5 do not decay over

time. If decay is allowed, that is, N i
k4t5= � ·N i

k4t−15+ I4k1 t5 ·1, then
unraveling can occur at a much faster rate. For example, if �= 0, it
may take only one repetition for each successively lower-level rule
to disappear.
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will actually be chosen by players. The identical rule
hierarchy, however, does not imply that the dynam-
ics of learning remain unchanged. In fact, we find
that this alternative specification of L0 leads to a dif-
ferent rate of learning for higher-level rules. Despite
this difference, we can still prove that Theorems 1
and 2 discussed above continue to hold. Further-
more, the qualitative nature of our empirical results
reported below remain unchanged under this alterna-
tive specification.

4. An Empirical Application to
Centipede Games

We use the data from experimental centipede games
conducted by McKelvey and Palfrey (1992). The
authors ran experiments using students subjects from
Caltech (two sessions) and Pasadena Community
College (four sessions). In each subject pool, half the
sessions were run on the four-stage game and the
other half on the six-stage game. Each experimental
session consisted of 18 or 20 subjects, and each sub-
ject played the game in the same role either 9 or 10
times. The random matching protocol was such that
each player was never matched with another player
more than once.

Contrary to backward induction, players did not
always take immediately in both four-stage and six-
stage games. In fact, a very large majority passed in
the first stage. For instance, 94% of the Caltech sub-
jects passed in the first stage in four-stage games (see
Tables 3 and 4). The distribution of game outcomes
is unimodal with the mode occurring at the inter-
mediate outcomes (outcomes 2 and 3 in four-stage
games, outcomes 3 and 4 in six-stage games). These
experimental results present a considerable challenge
to backward induction.

Tables 3 and 4 also suggest that Caltech subjects
take one stage earlier than PCC subjects in both four-
and six-stage games. Specifically, the modal outcome
is outcome 3 in four-stage games and outcome 4 in
six-stage games in the Caltech subject pool, whereas

Table 3 A Comparison of Outcomes in Four-Stage Games Between
Caltech and PCC Subjects

Outcome 4 3 2 1 0

Caltech (N = 100) 0006 0043 0028 0014 0009
PCC (N = 181) 0008 0031 0042 0016 0003

Table 4 A Comparison of Outcomes in Six-Stage Games Between
Caltech and PCC Subjects

Outcome 6 5 4 3 2 1 0

Caltech (N = 100) 0002 0009 0039 0028 0020 0001 0001
PCC (N = 181) 0 0005 0009 0044 0028 0012 0002

it is outcome 2 in four-stage games and outcome 3 in
six-stage games in the PCC subject pool. These results
suggest that the two subject pools exhibit different
levels of sophistication.

4.1. Dynamic Level-k Model
We use the dynamic level-k model to explain vio-
lations of backward induction in the above data.
To facilitate empirical estimation, we restrict atten-
tion to a parametric family of distributions for �4 · 5.
We use the parameter p0 ≡�405 to represent the frac-
tion of players with the initial belief that their oppo-
nents are nonstrategic thinkers who will play L0. The
remaining (1 − p0) fraction of players have the ini-
tial belief that their opponents are strategic thinkers.
We assume that the distribution of this latter type of
players 8�4151�4251 0 0 0 1 9 follows a geometric distri-
bution with parameter q, i.e., �4k5 = q · 41 − q5k−1 for
k = 1121 0 0 0 0 The geometric distribution has a natural
interpretation: the parameter q is the probability that
players believe their opponents will fail to advance to
the next higher-level rule. In other words, the higher q
is, the less sophisticated players believe their oppo-
nents are. The geometric specification is also consis-
tent with the empirical evidence that the modal rule
is frequently either L1 or L2 (see Costa-Gomes and
Crawford 2006; Crawford and Iriberri 2007a, b).

Given the parametric assumptions above, the pre-
diction of the dynamic level-k model for each cen-
tipede game and in every game round is completely
described by the three model parameters: p0, q, and �.
Note that p0 and q summarize the heterogeneity in ini-
tial beliefs, and � captures each player’s initial belief
strength. Conditional on the three parameters, the
model generates players’ choice probabilities for each
rule Lk for all game rounds. Let P i

t 4k � p01 q1�5 denote
the model’s predicted probability that player i will
choose rule Lk in round t.8 In the first round, P i

14k � p01
q1�5 = �4k − 15. For each subsequent round t, there
are two possible ways to update the model and gen-
erate the predictions:

1. Open-loop approach: We assume that subject i
mentally simulates and considers all possible
sequences of game histories that she could have
encountered in all previous rounds 1 to t − 1:
each sequence 4Lj4151Lj4251 0 0 0 1Lj4t − 155 consists
of the rule Lj4s5 chosen by the opponent j in
round s = 11 0 0 0 1 t − 1 and occurs with probability
∏t−1

s=1 P
j
s 4Lj4s5 � p01 q1�5. Note that each sequence of

observed rules generates a different belief Bi4t − 15

8 Given the sequential structure of the centipede game, different
values of k in Lk may give arise to identical rules. For example, for
player B, L1 = L2 = 8−1P1−1T 9. Such classes of rules can be lumped
together in our empirical estimation. For notational convenience,
we assume that players always choose the simpler rule (i.e., the
lower-level rule).
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through the process (2), and thus leads player i to
choose a best-response rule in round t according to
(3). Therefore, summing over all sequences for which
Lk is a best response, we obtain the probability P i

t 4k �

p01 q1�5 of player i choosing rule Lk in round t. This
approach allows us to systematically determine each
player’s choice probabilities in round t using the
probabilities that have been calculated for previous
rounds s = 11 0 0 0 1 t − 1.

2. Closed-loop approach: Subject i updates her belief
using only her own interactions with the matched
partners in rounds 1 to t − 1 (as opposed to sim-
ulating and considering all possible such interac-
tions in the population). As a consequence, there is
only one sequence (i.e., the observed sample path)
consisting of the rule Lj4s5 chosen by the oppo-
nent j in round s = 11 0 0 0 1 t − 1, i.e., 4Lj4151Lj4251 0 0 0 1
Lj4t − 155. Note that this observed sequence of rules
generates a belief Bi4t − 15 through the process (2)
and thus leads player i to choose a best-response rule
in round t according to (3). Given a particular initial
belief drawn from distribution �4 · 5, our model yields
a prediction for the best-response rule in round t for
subject i. Therefore, summing over all initial beliefs
for which Lk is a best response, we obtain the prob-
ability P i

t 4k � p01 q1�5 of player i choosing rule Lk in
round t.

Each approach has its pros and cons. The open-loop
approach considers expected frequencies of game
plays. It assumes that in each round, individual play-
ers not only react to their own histories, but also to
all other possible histories that could have occurred
if they were to be matched with other players in
the population. The closed-loop approach considers
individual histories of plays. It assumes that players
only respond to their own histories and that future
matched players are similar to those encountered in
the previous rounds. As a consequence, the open-loop
approach may run the risk of not being responsive
enough to the observed data, and the closed-loop
approach may run the risk of overreacting to the data.
Because players face different partners in each round
and future matched partners may be quite different
from those encountered in the past, players’ actual
behaviors are likely to fall between these two polar
cases. We estimate the model using both approaches
to understand which approach is superior in explain-
ing behaviors in the centipede game.

Having specified players’ choice probabilities over
rules, i.e., P i

t 4k � p01 q1�5, we now translate these
choice probabilities into predicted probabilities over
outcomes. Because outcomes are observed in the data,
we are interested in the probability of observing a
particular outcome in a particular round. Let Pt4o � p01
q1�5 denote the probability that outcome o will occur
in round t, conditional on the model parameters �1p0,

and q. In the centipede game, there is a well-defined
prediction over outcomes associated with any pair of
rules chosen by the players. For example, if player A
chooses L1 and player B chooses L3 in a four-stage
game, outcome 3 occurs with probability 1; if player A
chooses L0 and player B chooses L4 in a four-stage
game, outcomes 3 and 4 occur with probability 0.5
each. Therefore, based on players’ choice probabilities
over rules P i

t 4k � p01 q1�5, we obtain the model’s pre-
dicted probabilities over outcomes Pt4o � p01 q1�5.

Similar to backward induction, the dynamic level-k
model predicts that some game outcomes (e.g., out-
come 0) will occur with zero probability. To facilitate
empirical estimation, we need to incorporate an error
structure. We use the simplest possible error structure
(Crawford and Iriberri 2007a) to avoid specification
bias. We assume that there is an error probability
� > 0 each of the 4S+ 15 possible outcomes will occur,
and with the remaining probability 61 − � · 4S + 157,
our model prediction Pt4o � p01 q1�5 holds. Harless
and Camerer (1994) proposed the use of a uni-
form error rate to model individual choices, and this
approach was first used in the level-k specification
by Costa-Gomes et al. (2001). Given that we observe
outcomes ot in each round t, the likelihood function
is given by

L=
∏

t

861 − � · 4S + 157 · Pt4ot � p01 q1�5+ �90 (4)

We fit the dynamic level-k model to the data using
maximum likelihood estimation (MLE). We estimate
the model using both the open-loop and closed-loop
approaches. In addition, we separately estimate the
dynamic level-k model for Caltech and PCC subject
pools because of their apparent differences in the
degree of sophistication (see Tables 3 and 4). How-
ever, we use the same set of parameters (p01 q1�)
to fit both the four-stage and six-stage games. The
total error probability is also constrained to be the
same across both four-stage and six-stage games, i.e.,
5 · �445 = 7 · �465, where �4S5 is the error probability used
to fit the data of S-stage games. For brevity, we report
estimates of � = 4�445 + �4655/2.

Interestingly, the parameter estimates from both
the open-loop and closed-loop approaches provide
the same qualitative finding: Caltech subjects chose
higher-level rules than PCC subjects.9 The overall
likelihood for the open-loop approach, however, was
higher than that of the closed-loop approach. The
open-loop approach yields log-likelihood scores of

9 The parameter estimates from the closed-loop approach are (1)
p̂0 = 0006 (Caltech) and p̂0 = 0012 (PCC), (2) q̂ = 0040 (Caltech) and
q̂ = 0051 (PCC), and (3) �̂= 2058 (Caltech) and �̂= 2055 (PCC). These
parameter estimates suggest that Caltech players believe there is a
smaller fraction of level-0 opponents and the probability opponents
cannot advance to the next rule level is lower in its population.
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Table 5 Maximum Likelihood Estimates of Dynamic Level-k Model
and Its Special Cases (Caltech Subjects)

Parameter Backward induction Naive belief Static level-k Full model

p0 0 1 0001 0016
q 0 1 0052 0054
� � 0010 � 0015
� 0017 0016 0006 0007

Log-likelihood −35507 −35303 −32209 −31107

−31107 (Caltech) and −51401 (PCC), and the closed-
loop approach yields log-likelihood scores of −35006
(Caltech) and −56008 (PCC). Because the open-loop
approach fits the data better, we shall focus on its esti-
mation results below.

4.1.1. Estimation Results for Caltech Subjects.
Table 5 shows the estimation results for Caltech sub-
jects. As shown, the estimated parameters are p̂0 =

00161 q̂ = 00541 �̂ = 00151and �̂ = 0007, and the log-
likelihood is −31107. The estimated p̂0 and q̂ suggest
that, initially, 16% of the players are level 1, 45% are
level 2, 21% are level 3, and the remaining 18% are
level 4 or higher. The estimated �̂ = 0015 suggests a
small initial belief weight, which implies that repeti-
tion unraveling can begin to occur very quickly.10

Tables 6 and 7 compare the model prediction and
the actual data for the first and subsequent nine
rounds in the four-stage and six-stage games for Cal-
tech subjects. The best fitted dynamic level-k model
makes two predictions. First, the model predicts that
subjects’ behavior in the four-stage games should be
“closer” to the backward induction prediction, com-
pared to six-stage games (i.e., limited induction prop-
erty). Second, the model prescribes that unraveling
occurs; in fact, the fitted parameters imply that out-
come 1 should not occur after round 1. We suppress
the error term (i.e., fix � = 0) to generate the theoreti-
cal predictions in Tables 6 and 7. The tables show that
the model predictions were roughly consistent with
the data in the following ways:

1. In four-stage games, the game ends in the first
two stages (i.e., outcomes 3 and 4 occur) approxi-
mately 40% of the time. However, in six-stage games,
the game ends in the first two stages (i.e., outcomes 5
and 6 occur) only approximately 10% of the time.

2. In four-stage games, the proportions of out-
comes 0 and 1 decline after the first round. For exam-
ple, the proportion of outcome 1 decreases from 20%

10 Nagel and Tang (1998) studied normal-form centipede games and
showed that fictitious play models (without initial belief weight �)
do not fit their experimental data well. In contrast, our results sug-
gest that dynamic level-k models (which are similar to fictitious
play models) with initial belief weight � can capture learning well
in extensive-form centipede games. This difference could be due to
the inclusion of the � parameter in dynamic level-k models, which
effectively allows for a different rate of learning across games.

Table 6 A Comparison of Data and Dynamic Level-k Model
Prediction in Four-Stage Games (Caltech Subjects)

Outcome 4 3 2 1 0

Round 1 data (N = 10) 0 0030 0030 0020 0020
Prediction (� = 0) 0018 0025 0046 0011 0
Rounds 2–10 data (N = 90) 0007 0044 0028 0013 0008
Prediction (� = 0) 0018 0066 0015 0 0

Table 7 A Comparison of Data and Dynamic Level-k Model
Prediction in Six-Stage Games (Caltech Subjects)

Outcome 6 5 4 3 2 1 0

Round 1 data (N = 10) 0 0 0030 0010 0060 0 0
Prediction (� = 0) 0004 0006 0013 0025 0042 0010 0
Rounds 2–10 data (N = 90) 0002 0010 0040 0030 0016 0001 0001
Prediction (� = 0) 0 0001 0024 0062 0012 0 0

to 13%. In six-stage games, outcomes 0 and 1 rarely
occur (approximately 1% of the time).

We also fit three nested cases of the dynamic level-k
model. They are all rejected by the likelihood ratio
test. The backward induction model (i.e., p0 = q =

01� = �) yields a log-likelihood of −35507, which
is strongly rejected in favor of the full model (�2 =

8800). The naive belief model (i.e., p0 = q = 1) (which
assumes that all players initially believe that their
opponents will always choose randomly) yields an
estimated �̂= 0010 and a log-likelihood of −35303. The
model is again strongly rejected with �2 = 8302. The
static level-k model corresponds to � = �. Because
players’ initial belief will persist throughout the game
plays, they will always choose the same rule Lk across
rounds. This restriction yields parameter estimates of
p̂0 = 0001 and q̂ = 0052 and provides a reasonable fit
with a log-likelihood of −32203. However, the static
model is also rejected by the likelihood ratio test (�2 =

21021 p < 00001).
Given the MLE estimates of p̂0 = 00161 q̂ = 0054, and

�̂= 0015, we can generate the dynamic level-k model’s
predicted frequencies for each of the outcomes. Fig-
ure 4 shows the actual and predicted frequencies of
each outcome. The top panel shows the results for
the four-stage game, and the bottom panel shows
the results for the six-stage game. Backward induc-
tion predicts that only outcome 4 in the four-stage
game and only outcome 6 in the six-stage game can
occur (i.e., player A takes immediately). This back-
ward induction prediction is strongly rejected by the
data. As shown, the dynamic-k model does a rea-
sonable job in capturing the unimodal distribution of
the outcomes. In addition, the dynamic level-k model
is able to capture the two most frequently occurring
outcomes. Specifically, the dynamic level-k model cor-
rectly predicts that the two most frequently played
outcomes are 2 and 3 in the four-stage game and 3
and 4 in the six-stage game.
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Figure 4 Dynamic Level-k Model Fit (Dark Bars) and Data (Light Bars) for Caltech Subjects
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4.1.2. Estimation Results for PCC Subjects. We
also fit our model to the data obtained from PCC
subjects. Table 8 shows the estimation results. The
dynamic level-k model yields parameter estimates of
p̂0 = 0�26� q̂ = 0�53� �̂ = 0�80, and ̂ = 0�06. These esti-
mates suggest that, like the Caltech subjects, the PCC
subjects also learn from past plays but they are more
stubborn (because they have a higher initial belief
weight of �̂= 0�80). The results also show that a larger
proportion of PCC subjects play the level-1 rule ini-
tially (with p̂0 = 0�26 for PCC subjects, compared to
p̂0 = 0�16 for Caltech subjects). The naive belief model
(p0 = q = 1) gives a log-likelihood score of −599�7, and
the backward induction prediction (p0 = q = 1��=�)
gives a log-likelihood score of −643�8, so both models
are strongly rejected by the likelihood ratio test. Like
before, the static level-k model is strongly rejected by
the likelihood ratio test (�2 = 22�4� p < 0�01).

Table 8 Maximum Likelihood Estimates of Dynamic Level-k Model
and Its Special Cases (PCC Subjects)

Parameter Backward induction Naive belief Static level k Full model

p0 0 1 0�19 0�26
q 0 1 0�59 0�53
� � 0�10 � 0�80
� 0�17 0�13 0�02 0�06
Log-likelihood −643�8 −599�7 −525�3 −514�1

Given the MLE estimates of p̂0 = 0�26� q̂ = 0�54,
and �̂ = 0�80 for PCC subjects, we can generate the
dynamic level-k model’s predicted frequencies for
each of the outcomes. Figure 5 shows the actual
and predicted frequencies of each outcome. The top
panel shows the results for the four-stage game, and
the bottom panel shows the results for the six-stage
game. The plot shows that the dynamic level-k model
provides a reasonably good fit of the data for PCC
subjects.

Finally, we show that our best fitted dynamic
level-k model is indeed consistent with the lim-
ited induction and repetition unraveling properties
described in §2. Following the approach described
in §2, we calculate the deviation from backward
induction for each outcome using Equation (1) and
then take expectations using the predicted frequen-
cies of the best fitted model. For Caltech subjects,
the expected deviation from backward induction is
0.36 for the four-stage game and increases to 0.49 for
the six-stage game. Similarly, for PCC subjects, the
expected deviation from backward induction is lower
in the four-stage game than in the six-stage game (0.44
versus 0.55). These results support the limited induc-
tion property. Next, using the best fitted models for
the two subject pools, we find that the expected devi-
ation from backward induction for Caltech subjects
is higher in the first five rounds than in the last

C
o
p
yr
ig
h
t:

IN
F
O
R
M
S

ho
ld
s
co

py
rig

ht
to

th
is

A
rt
ic
le
s
in

A
dv

an
ce

ve
rs
io
n,

w
hi
ch

is
m
ad

e
av

ai
la
bl
e
to

su
bs

cr
ib
er
s.

T
he

fil
e
m
ay

no
t
be

po
st
ed

on
an

y
ot
he

r
w
eb

si
te
,
in
cl
ud

in
g

th
e

au
th
or
’s

si
te
.
P
le
as

e
se

nd
an

y
qu

es
tio

ns
re
ga

rd
in
g

th
is

po
lic
y
to

pe
rm

is
si
on

s@
in
fo
rm

s.
or
g.



Ho and Su: Dynamic Level-k Model in Sequential Games
Management Science, Articles in Advance, pp. 1–18, © 2012 INFORMS 13

Figure 5 Dynamic Level-k Model Fit (Dark Bars) and Data (Light Bars) for PCC Subjects
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five rounds (0.43 versus 0.41; these figures are aver-
aged over four-stage and six-stage games with equal
probability); the same inequality holds separately for
both four-stage and six-stage games. Similarly, for
PCC subjects, the expected deviation also decreases
from 0.51 in the first five rounds to 0.47 in the
last five rounds. These results suggest that the rep-
etition unraveling property holds. Interestingly, note
that PCC subjects exhibit a higher deviation than the
Caltech subjects. In summary, we conclude that the
dynamic level-k model can account for limited induc-
tion and repetition unraveling properties, the two sys-
tematic violations of backward induction.

4.2. Reputation-Based Model
As indicated before, backward induction does
not admit passing behavior in centipede games.
To explain why players pass, Kreps et al. (1982) pro-
posed transforming a centipede game into a game of
incomplete information by introducing some uncer-
tainty over the player type. If there is a small
fraction 
 of players that always pass (i.e., the altru-
ists), then even the self-interested players may find
it in their best interest to pass initially. However,
this reputation-based model generates the following
predictions that run counter to the observed data
(McKelvey and Palfrey 1992):

1. When 
 is small (0 ≤ 
 ≤ 1/49), the model will
not correctly predict the most frequently occurring

outcomes. For instance, the model predicts the modal
outcome to be outcome 4 in four-stage game, whereas
the data suggest it should be outcome 2. Similarly,
the model predicts the two most frequently occurring
outcomes to be outcomes 4 and 5 in six-stage game,
whereas the data suggest they should be outcomes 2
and 3.

2. When 
 is intermediate (1/49 < 
 ≤ 1/7), the
model will not admit outcome 4 in the four-stage
game and outcomes 4–6 in the six-stage game. Yet,
the occurrences of these outcomes are not negligible
in the data, particularly for Caltech subjects.

3. When 
 is large (
 > 1/7), the model predicts
players either pass in every stage (outcome 0) or take
at the last stage (outcome 1), which is contrary to
the data.

The above discussion suggests that there exists no
common 
 value that will explain the unimodal dis-
tribution of game outcomes in both the four-stage and
six-stage games well.

We estimate the reputation-based model using the
same data. Like before, because the reputation-based
model predicts that some outcomes will occur with
zero probability, we add an error probability  to
every possible outcome. The best fitted model yields

̂ = 0�05 and ̂ = 0�11 for Caltech subjects and 
̂ =

0�08 and ̂= 0�05 for PCC subjects. The log-likelihood
scores are −329�8 and −518�8, respectively. Finally,
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we compare the reputation-based model with the
dynamic level-k model using the standard Akaike
information criterion (AIC) because the former is not
nested by the latter. The AIC of the dynamic level-k
model is 631.4 and 1,036.2 for the Caltech and PCC
subjects, respectively. Both figures are lower than the
corresponding figures of 663.6 and 1,041.6 for the
reputation-based model. These results suggest that
the dynamic level-k model does a better job of fitting
the data compared to the reputation-based model. It
is possible to consider a dynamic generalization of the
reputation-based model, in which the self-interested
players learn about the fraction of altruists (i.e., the
� parameter) over time and update their mixed strat-
egy accordingly. Such a model is likely to provide a
better fit. However, given an observed outcome, it is
not clear how players should revise their beliefs of
�. In contrast, in the dynamic level-k model, because
players observe opponents’ rules, the belief updating
is more straightforward.

4.3. Models of Social Preferences
Could the unimodal distribution of game outcomes in
centipede games be attributed to social preferences?
To address this question, we apply the inequity aver-
sion model of Fehr and Schmidt (1999). Let xi and
x−i denote the material payoffs of player i and oppo-
nent −i, respectively. Then, the payoff of player i,
Ui4xi1x−i5, is given by

Ui4xi1x−i5= xi −� · 6xi − x−i7
+

−� · 6x−i − xi7
+1 (5)

where 0 <�< 1 captures a player’s aversion to being
ahead, and �> 0 captures a player’s aversion to being
behind. The parameter � is between 0 and 1 because
a player who is ahead will not give up a $1 to bene-
fit her opponent by less than $1. One can then solve
the game by backward induction given these revised
payoff functions.

Theorem 3. In the centipede game, social preferences
lead to either taking immediately or passing all the way in
both the four-stage and six-stage games. Specifically, social
preferences predicts that if 3 ·�−6 ·�< 2, players will take
immediately; otherwise they will pass all the way.

Proof. See Appendix A.

The above theorem states that a model of inequity
aversion admits only either outcome 0 or 4 in the
four-stage game and either outcome 0 or 6 in the
six-stage game. The occurrence of either outcome
depends on the fairness parameters � and �. If play-
ers are sufficiently averse to being behind (high �),
they will take immediately, which is consistent to
backward induction. On the other hand, if players

are sufficiently averse to being ahead (high �), they
will pass all the way. Both predictions are inconsis-
tent with the unimodal distribution of actual game
outcomes.

We estimate the social preference model using the
centipede game data. If 3 · � − 6 · � < 2, the social
preference model yields identical predictions as back-
ward induction, so the best fit yields a log-likelihood
of −35507 for Caltech subjects and −64308 for PCC
subjects. If 3 ·�− 6 ·�≥ 2, the social preference model
predicts that players pass all the way, and we find that
best fit again yields a log-likelihood of −35507 and
−64308. Hence the model performs poorly compared
to the dynamic level-k model. However, the utility
function in (5) can be generalized to capture nonlinear
social preferences. Such extensions may describe the
data better by admitting intermediate game outcomes
and can be explored in future research.

5. Sequential Bargaining Games
This section demonstrates the generalizability of the
dynamic level-k model to accommodate other vio-
lations of backward induction. For example, such
violations have been studied in sequential bargain-
ing games (Guth et al. 1982), the chain-store para-
dox (Selten 1978), and the finitely repeated prisoners’
dilemma (Kreps et al. 1982). In particular, we apply
the dynamic level-k model to study sequential bar-
gaining games.

This section investigates the generalizability ques-
tion by applying the same dynamic level-k model to
sequential bargaining games (Stahl 1972, Rubinstein
1982). Like centipede games, sequential bargaining
games consist of a finite number of stages. In each
stage, two players bargain over a fixed pie, with one
player proposing a division of the pie and the other
player either accepting or rejecting the proposed offer.
Upon acceptance, the game ends, and both players
receive their shares according to the proposal. Upon
rejection, the game proceeds to the next stage, and
it is now the other player’s turn to propose a divi-
sion. However, in each subsequent stage, the size of
the pie shrinks. In the final stage, both players receive
nothing if the final proposal is rejected. The back-
ward induction principle provides a sharp prediction
for a sequential bargaining game: in the very first
stage, the proposer will demand the largest possible
share that will be accepted by the responder and the
game ends. Camerer et al. (1993) provided some of
the earliest experimental evidence to show that sub-
jects rarely look at crucial payoff information that is
needed to apply backward induction in sequential
bargaining games. Johnson et al. (2002) built on this
work by showing that these violations of backward
induction cannot be explained by social preferences
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Table 9 Initial Demands by Player A for Rounds 1–10 and
Rounds 11–20 in Binmore et al. (2002)

Disagreement payoffs

4101105 4701105 4101605

Rounds 1–10 6409 (10.3) 8208 (8.2) 3908 (9.8)
Rounds 11–20 6608 (6.6) 8304 (3.9) 3600 (6.9)

because subjects make similar offers to robot players.
Overall, both studies provide compelling “mouselab”
process data to show that subjects did not apply back-
ward induction in these games.

Binmore et al. (2002) investigated the simplest pos-
sible sequential bargaining games called the ultima-
tum games (refer to seminal work by Guth et al.
(1982) and Guth and Tietz (1990) for a comprehen-
sive review of the literature). In ultimatum games, the
first player (player A) proposes a division of a pie
of size � = 100, and the game ends with the second
player (player B) either accepting or rejecting the pro-
posed offer. In their experimental design, the authors
consider different disagreement payoffs, i.e., payoffs
players A and B would receive 4VA1VB5, respectively,
if player A’s proposal were rejected. Three disagree-
ment payoffs were tested, with 4VA1VB5 being 4101105,
4701105, or 4101605. Furthermore, subjects played the
game repeatedly for 20 rounds. The repeated plays
allow us to detect any shift in initial demands by
player A over time in these ultimatum games.

Table 9 presents player A’s demands in these exper-
iments. We group and compare data for the first
10 rounds and data for the last 10 rounds to detect
learning over time. We note that player A’s initial
demands increase over game rounds when disagree-
ment payoff vectors of 4101105 and 4701105 are used.
For the former, the increase from 64.9 to 66.8 is highly
significant (t = −4050, p-value < 00001). For the latter,
the increase from 82.8 to 83.4 is marginally significant
at 10% level (t = −1090, p-value = 00057). On the other
hand, player A’s initial demands decrease from 39.8
to 36.0 over game rounds when disagreement payoffs
of 4101605 are used, and this difference is highly sig-
nificant (t = 9002, p-value < 00001).

Can the dynamic level-k model predict these shifts
in initial demands over time, especially when the
direction of shift varies across the different disagree-
ment payoff vectors (VA1VB)? The answer is yes.
Let us explain why. We first need to construct the
dynamic level k’s rule hierarchy. Like before, level-0
players are assumed to choose a number between 0
and 100 randomly. For player A, this randomly cho-
sen number is the initial demand, and for player B,
this number is the acceptance threshold (i.e., only
player A’s offer that is above this number will
be accepted). Next, level-1 players best respond to

Table 10 Initial Demands by Level-k Player A with Different
Disagreement Payoffs

Disgareement payoffs

k 4101105 4701105 4101605

0 Random Random Random
1 55 85 55
≥ 2 90 90 40

level-0 players’ randomization strategies. A level-1
player B will accept any offer greater than VB.
A level-1 player A’s offer of y will be accepted
(by a level-0 player B) with probability y/100, and
thus yields an expected payoff of 4y/10054100 − y5 +

44100 − y5/1005VA. Hence, the optimal offer is y∗ =

4100 −VA5/2, so the optimal demand is 4100 +VA5/2.
Finally, we consider level-2 players’ optimal best
responses. As above, a level-2 player B will accept
any offer greater than VB. A level-2 player A will
offer the minimum acceptable amount to a level-1
player B, which is VB. Thus, the initial demand by a
level-2 player A is 100 −VB. Plugging in the values for
4VA1VB5 used in the experiments, we obtain each rule
level’s optimal best response in Table 10 (note that Lk

for k > 2 has the same optimal best response as L2).
As discussed above, the dynamic level-k model

suggests that all players will eventually advance to
higher-level rules and play the backward induction
outcome. Specifically, we can show that lower-level
rules will be successively eliminated as players gather
more observations of their opponents’ rules through
repeated game plays. For ultimatum games with dis-
agreement payoffs, L1 players will eventually play the
strategies for L2 and above. This transition leads to
an increase in initial demands when the disagreement
payoffs are 4101105 or 4701105 and a decrease in initial
demands when the disagreement payoffs are 4101605.
This prediction indeed matches the direction of the
shift in initial demands observed in the experiments
of Binmore et al. (2002).

In a related study, Neelin et al. (1988) investigated
a two-stage sequential bargaining game with pie sizes
of $5.00 (Stage I) and $1.25 (Stage II) and a three-
stage sequential bargaining game with pie sizes of
$5.00 (Stage I), $2.50 (Stage II), and $1.25 (Stage III).
Note that the pie shrinks faster in the two-stage than
in the three-stage game. The pie sizes are chosen so
that the backward induction prediction is identical
across the two-stage and three-stage games; i.e., in
the very first stage, the proposer will propose to keep
$3.75, and the responder will accept and receive $1.25.
However, experimental results reveal a stark dispar-
ity in initial demands between the two-stage and
three-stage games. In the two-stage game, the modal
amount that is demanded by the proposer in the first
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Table 11 Initial Demand Chosen by Level-k Player in Two-Stage and
Three-Stage Sequential Bargaining Games

k Two-stage games Three-stage games

0 Random Random
1 3075 2066
2 4069 3075
3 3075 2081
≥ 4 3075 3075

round is $3.75 (chosen by 15 out of 40 subjects). How-
ever, in the three-stage game, the modal demand is
$2.50 (chosen by 28 out of 40 subjects). The mean
initial demands for the two games are statistically dif-
ferent, even though backward induction predicts no
difference between them. We investigate whether the
same dynamic level-k model can explain the stark dif-
ference in initial demands between the two-stage and
three-stage sequential bargaining games.

Again, we construct a level-k rule hierarchy to
determine the initial demand chosen by a level-k
player in the first stage as follows. Like before, we
assume that level-0 players choose randomly within
the feasible strategy space at each stage. For each
higher-level rule Lk1 k ≥ 1, we can iteratively calcu-
late its best response like before (see Appendix B for
details). Table 11 summarizes each rule level’s initial
demand prediction.

Notice that rules L11L2, and L3 all prescribe a
smaller initial demand in the three-stage game com-
pared to the two-stage game. Also, recall that under
the dynamic level-k model, all players choose rules
L1 and above. Therefore, if the proportion of play-
ers choosing rules L11L2, and L3 is large enough
(i.e., �4051�415, and �425 are high enough), then the
dynamic level-k model will indeed predict a lower
initial demand in three-stage games, as observed
in the Neelin et al. (1988) sequential bargaining
experiments.

6. Conclusions
In experimental centipede games, backward induction
is frequently violated. We develop a dynamic level-k
model to explain two systematic violations of back-
ward induction. First, players tend to deviate more
from backward induction in games with a greater
number of stages or subgames. Our model cap-
tures this limited induction phenomenon by allow-
ing players to have heterogeneous initial beliefs about
others’ level of sophistication and hence adopt dif-
ferent rules from an iteratively defined rule hierar-
chy. As a consequence, if a player adopts the same
rule, there is always a higher deviation from back-
ward induction in a game with more stages. Sec-
ond, players move closer to backward induction with

repetition. Our model captures the repetition unrav-
eling phenomenon by allowing players to update
beliefs of their opponents’ rules and hence adjust their
own rules over repetition. Unraveling occurs because
the dynamic level-k model implies a domino effect
over repetition as lower-level rules are successively
eliminated.

We fit our model to the experimental centipede
games of McKelvey and Palfrey (1992). Our estima-
tion results show that the dynamic level-k model cap-
tures the unimodal distribution of game outcomes
in both four-stage and six-stage games reasonably
well. Special cases including backward induction and
the static level-k model are strongly rejected by the
data. Interestingly, Caltech subjects, who are arguably
more sophisticated, believe their opponents are more
sophisticated, and learn faster than PCC subjects.

We apply the same dynamic level-k model to ac-
count for violations of backward induction in se-
quential bargaining games. Our results suggest that
the dynamic level-k model is capable of capturing
systematic violations of backward induction in two
separate studies and looks promising as a possible
empirical alternative in predicting behaviors in these
games.

Our model is a generalization of backward induc-
tion. In addition, the dynamic level-k model con-
verges to backward induction in the limit, so it can
be conceptualized as a tracing procedure for back-
ward induction, and as a consequence, the former
provides a dynamic foundation for the latter. Framing
it this way, the violations of backward induction in
the experiments are simply “transient” behaviors that
the dynamic level-k model explicitly characterizes.

Acknowledgments
The authors are listed in alphabetical order. They thank
Juin-Kuan Chong for his collaboration in this project’s
early stages, and Vince Crawford for extremely helpful
comments. They are also grateful for constructive feed-
back from seminar participants at the Chinese University
of Hong Kong, Cornell University, INSEAD, Northwestern
University, University of California at Berkeley, Univer-
sity of Minnesota, University of Oxford, and University of
Pennsylvania. Finally, they thank department editor Peter
Wakker, the associate editor, and three reviewers for an
extremely constructive review process. Direct correspon-
dence to any of the authors.

Appendix A. Proofs

Proof of Theorem 1. Consider two centipede games
with s and S subgames, where s < S. Suppose that the pro-
portion of players who choose each rule level is the same
in both games. Let �k denote the proportion of players who
choose rule Lk, where k ≥ 1. Let E�4S5 denote the expected
deviation in a game with S subgames.
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Suppose player A adopts rule LkA
and player B adopts

rule LkB
in a game with S stages. Then, the deviation is

�4LkA
1LkB

1S5=
1
S
6S−4min4�kA/2�1S/25+min4�kB/2�1S/25571

which is weakly increasing in S for every kA and kB .
Now, comparing the expected deviations in both games,

we have

E�4S5−E�4s5

=

S
∑

kA=1

S
∑

kB=1

�kA
�kB

6�4LkA
1LkB

1 S5− �4LkA
1LkB

1 s57≥ 01

which gives the required result. �

Proof of Theorem 2. Consider any player in the cen-
tipede game. For concreteness, we focus on the four-stage
game (see Figure 1) but the proof proceeds in the same way
for any number of stages. Suppose player i holds beliefs
Bi4t5= 4Bi

04t51B
i
14t51 0 0 0 1B

i
44t55 at time t, where Bi

k4t5 denotes
the player’s belief of the probability that the opponent will
use rule Lk and is calculated from rule counts N i4t5 =

4N i
04t51N

i
14t51 0 0 0 1N

i
44t55 as in (2). Given the above beliefs,

the player chooses a best-response rule according to (3).
Notice that player A may choose from the rules L11L3

(which is equivalent to L2), and L4, and player B may choose
from the rules L2 and L4 (which are equivalent to L1 and L3,
respectively). Using the payoffs in Figure 1, we calculate the
expected payoffs of each player from using each rule. For
player A, the expected payoffs from choosing L11L3, and
L4 are, respectively, 19bA0 + 8bA112 + 2bA314, 9bA0 + 16bA112 + 2bA314,
and 4bA0 + 4bA112 + 4bA314, where biR denotes player i’s beliefs
of the opponent choosing a rule level from R. For exam-
ple, at time t, bA112 = bA1 4t5+ bA2 4t5. Similarly, for player B, the
expected payoffs from choosing rules L1 and L3 are, respec-
tively, 905bB0 + 32bB1 + 4bB213 + bB4 and 405bB0 + 8bB1 + 8bB213 + bB4 .

In the model, each player starts at t = 0 with a belief
weight of � on some k and adds a unit weight in each
round t. Note that no player will choose L0, so the weights
will be added to levels k ≥ 1 in each round.

Consider player A. For L1 to be a best response, it
must dominate L2 and L4, so we must have 10bA0 ≥ 8bA112
and 15bA0 + 4bA112 ≥ 2bA314, which implies 10bA0 ≥ bA314. Because
weights will only be added to levels k ≥ 1, at least one
of the above inequalities will not hold after R1 ≡ �10� +

45/45�� + 1 = �11025�� + 1 rounds. Thereafter, player A will
never choose L1.

Now, consider player B. For L2 (or L1) to be a best
response, it must dominate L4 (or L3), implying that 5bB0 +

16bB1 ≥ 4bB213. After RA rounds (calculated above), player A
never chooses L1, so all weights will be added to levels k ≥ 2
subsequently. Now, after another R2 ≡ �45�+ 16R15/4� + 1
rounds, the above inequality will not hold and player B will
never choose L2.

Finally, we move back to player A. For L3 (or L2) to be a
best response, it must dominate L4, requiring 5bA0 + 8bA112 ≥

2bA314. After R1 + R2 rounds (calculated above), player B
never chooses L2, so all weights will be added to lev-
els k ≥ 3. After an additional R3 ≡ �45�+ 84R1 +R255/2� + 1
rounds, the inequality above will not hold, and player A
will never choose L3. Therefore, after R1 +R2 +R3 rounds,

both players will always choose L4 = L�, and the backward
induction outcome always occurs. �

Proof of Theorem 3. We will prove the result for a four-
stage game. The proof for a six-stage game proceeds sim-
ilarly. First, consider the case where 3� − 6� ≤ 2. In the
last stage, the payoffs to players A and B, respectively, are
481325 if player B takes and 4641165 if player B passes. The
corresponding utilities to player B are 32 − 24� and 16 −

48�, respectively. Because the condition 3�− 6� ≤ 2 holds,
player B prefers to take. Reasoning backward, in the second
last stage, the payoffs to both players are 416145 if player A
takes and 481325 if player A passes (because player B will
then take in the last stage). The corresponding utilities to
player A are 16−12� and 8−24�, so by the same condition
above, player A takes. Using the same reasoning, players
will take in every stage.

Next, consider the other case where 3�− 6� ≥ 2. By the
calculations above, we know that player B will now pass in
the last stage. Now, in the second last stage, the payoffs to
players A and B are 416145 if player A takes and 4641165 if
player A passes (because player B will also pass in the last
stage). The utilities are 16−12� and 64−48�. Because �≤ 1,
the latter is greater, and thus player A passes. Proceeding
backward, in the third last stage (i.e., Stage II), player B’s
payoff from taking is 8 − 6�, which is less than his payoff
32−24� from taking in the last stage, because �≤ 1. Because
player B prefers passing in the last stage, the same applies
in this stage as all players will pass subsequently. Using the
same logic, players will pass in every stage. �

Appendix B. Calculations for Bargaining Games
We first consider the two-stage and three-stage sequential
bargaining games studied by Neelin et al. (1988). Player A
first acts as the proposer follower by player B. We assume
that level-0 players randomize uniformly. Specifically, in the
first stage, the level-0 player A randomly chooses a num-
ber between 0 and 5.00 as the initial demand. Similarly, in
the second stage, the level-0 player B randomly chooses
a number between 0 and 2.50, which serves both as an
acceptance threshold and a demand: if player A’s offer from
Stage I exceeds this number, player B accepts the offer; oth-
erwise, player B rejects and demands this amount. Next,
in the third stage, the level-0 player A randomly chooses
a number between 0 and 1.25 as the acceptance threshold
and demand. Finally, when responding to this final offer
from the third stage, the level-0 player B randomly chooses
a number between 0 and 1.25 as the acceptance threshold.
(For convenience, we shall refer to this final decision as
Stage III+.) Given this specification for L0 strategies, we can
iteratively calculate the strategies for L1 and above.

Now, we consider the L1 player. In Stage III+, player B
best responds and thus will accept any positive offer. In
Stage III, upon rejecting the previous offer, player A must
choose some amount y ∈ 60110257 to offer, which is accepted
with probability y/1025 and thus yields payoff 4y/10255 ·

41025 − y5; the optimal offer is thus 0.625, and the expected
payoff is 0.3125, which is thus the acceptance threshold.
Now, we move to Stage II. Here, upon rejecting the previ-
ous offer, player B must choose some amount y ∈ 6012057
to offer; any offer of 1.25 or above will be accepted with
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certainty and is dominated by offering 1.25, so we focus
on y ∈ 60110257. The offer y will be accepted with probabil-
ity y/1025 and rejected with probability 41025 − y5/1025, and
upon rejection, B will accept A’s subsequent (final) offer.
Thus, B’s expected payoff from offering y to A is given by
4y/102554205−y5+ 41025 − y5/102541025− 41025 + y5/25, which
attains a maximum value of 1.25 at y∗ = 1025. So, B’s accep-
tance threshold at this stage is 1.25. Finally, we move to
Stage I. Here, player A makes an offer y ∈ 60157 to player B.
Similar to above, we focus on y ∈ 6012057 because offers
above 2.5 are dominated by an offer of 2.5. Following a sim-
ilar logic as above, player A’s payoff function is

�4y5=



































y

205
45 − y5+

201875 − y

205

(

205 −
201875 + y

2

)

+
205 − 201875

205
40031255 y ≤ 2018751

y

205
45 − y5+

205 − y

205
40031255 y > 2018751

which is maximized at y∗ = 2034375. Thus, the level-1
player A makes an initial demand of 5−y∗ = 2066. Next, we
move to the L2 player. In Stage III+, player B will accept
any positive offer. In Stage III, player A will demand 1.25
because the level-1 player A will accept any positive offer. In
Stage II, player B will demand 205−003125 = 201875 because
the level-1 player A’s acceptance threshold (in Stage III) is
0.3125. Finally, in Stage I, player A will demand 5 − 1025 =

3075 because the level-1 player B’s acceptance threshold
(in Stage II) is 1.25. The same reasoning gives the strategies
for higher-level players.
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