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In earlier research we proposed an ``experience-weighted attraction (EWA)
learning'' model for predicting dynamic behavior in economic experiments on
multiperson noncooperative normal-form games. We showed that EWA
learning model fits significantly better than existing learning models (choice
reinforcement and belief-based models) in several different classes of games.
The econometric estimation in that research adopted a representative agent
approach and assumed that learning parameters are stationary across periods
of an experiment. In addition, we used the logit (exponential) probability
response function to transform attraction of strategies into choice probability.

This paper allows for nonstationary learning parameters, permits two
``segments'' of players with different parameter values in order to allow for
some heterogeneity, and compares the power and logit probability response
functions. These specifications are estimated using experimental data from
weak-link and median-action coordination games. Results show that players
are heterogeneous and that they adjust their learning parameters over time
very slightly. Logit probability response functions never fit worse than power
functions, and generally fit better. � 1998 Academic Press

1. INTRODUCTION

Most game theorists now agree that equilibration arises in games because players
learn or evolve, rather than figuring equilibria out by introspection. An important
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empirical challenge is explaining how this learning occurs, preferrably with a model
that is psychologically plausible and fits data well.

In Camerer and Ho (1997), we propose an ``experience-weighted attraction''
(EWA) learning model and show that it accounts for dynamic behavior well in
three classes of experimental games. The EWA learning model has three desirable
properties:

v EWA satisfies principles of actual, simulation, and declining effects. The prin-
ciple of actual effect states that successes will increase choice probability of chosen
strategies. This principle corresponds to the ``law of effect'' widely discussed in
behaviorist psychology (Thorndike, 1911; Herrnstein, 1970). The principle of
simulated effect states that unchosen strategies which would have yielded high
payoffs (i.e., simulated successes) are more likely to be chosen. This principle
suggests that players move to reduce ex post difference (or error) between the
actual and foregone payoffs, and is also widely used in cognitive psychology (e.g.,
connectionist neural networks). The principle of declining effect states that the effect
of payoffs on choices diminishes over time. This principle captures the fact that
dynamic behavior in economic experiments often converge to stable behavior over
time.

v EWA contains two well-known and very different approaches as special
cases. One approach, belief-based models, starts with the premise that players keep
track of the history of previous play by other players and form some belief about
what others will do in the future based on past observation. Then they choose a
best-response strategy which maximizes their expected payoffs, given the beliefs they
formed (Brown, 1951; Fudenberg 6 Levine, in press). The other approach, choice
reinforcement, assumes that strategies are ``reinforced'' by their previous payoffs,
and the propensity to choose a strategy depends in some way on its stock of
cumulative reinforcement. Reinforcement models are belief-free: Players care only
about the payoffs strategies yielded in the past, not about the history of play that
created those payoffs (Bush 6 Mosteller, 1955; Harley, 1981; Arthur, 1991; Roth 6

Erev, 1995). The EWA model includes the belief-based and reinforcement
approaches as special cases, but it is not simply a convex combination of those
cases. Instead, it is a kind of hybrid or composite which can blend whichever
features of each model are most useful for explaining paths of data.

v EWA captures learning situations in which subjects use history of plays by
opponents, and full information about their own prospective payoffs, in adjusting
their choice behavior. Some existing models (e.g., reinforcement) assume that
subjects do not use such information. These simpler models cannot explain why
learning is different when information is and is not available (e.g., Van Huyck,
Battalio, Rankin, 1996).

The goal of our paper is to extend Camerer and Ho (1997) (CH) by modeling
agent heterogeneity and time variation of parameters, and comparing the logit and
power probability functions. The econometric estimation in CH adopted a repre-
sentative agent approach which assumed that all agents are the same. Obviously
this is unrealistic, but allowing each agent's parameter values to differ adds too
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many free parameters for the data we estimate (cf. Cheung 6 Friedman, 1997). An
intermediate step assumes that agents are in one of two (or more) ``latent'' classes.
Agents in each class have the same parameter values, but parameters differ across
the two classes. We can then see whether allowing two classes fit the data substan-
tially better than allowing only a single class. In addition, we can test whether the
EWA model, allowing two different classes, fits better than a population mixture
model in which one class are reinforcement learners and another class are belief-
based learners.

Our earlier estimation (and all others) also assumed that learning parameters are
constant over periods of the experiment. Parameters might vary over time if there
is a kind of ``learning about learning'' or shift from one learning rule to another
during a game.

Our earlier estimation used the logit (exponential) probability response function
to transform attraction of strategies into choice probability. We compare logit and
power probability response functions, since both have been used in the literature
and are not often compared.

In the next section, we describe EWA formally and shows it contains the belief-
based and choice reinforcement as special cases. We discuss the advantages and dis-
advantages of the power and logit probability response functions. The third section
provides interpretations of the model parameters and discusses why studying
heterogeneity and time variation in learning parameters could help to explain
dynamic behaviors better. The fourth section reports parameter estimates from two
coordination games. The last section concludes.

2. THE EXPERIENCE-WEIGHTED ATTRACTION LEARNING MODEL

Like the reinforcement and belief-based approaches, the experience-weighted
attraction (EWA) model defines an intermediate construct which measures the
attraction of strategies. The probability of choosing each strategy is an increasing
function of the relative attraction of a strategy (in a precise way made clear below).
In all our work we assume that the strategies which are reinforced are stage-game
strategies. For many reasons it is sensible, in further work, to consider other kinds
of strategies (including repeated-game strategies or decision rules; see Stahl, 1996).
For example, Erev and Roth (in press) suggest that it is possible to model belief
learning as reinforcement of a belief-based decision rule. Our framework can also
be easily adapted to model learning over strategies which are more complicated
than simple stage-game strategies.

We start with notation. We study n-person normal-form games. Players are
indexed by i (i=1, ..., n), and the strategy space of player i, Si consists of m i discrete
choices, that is, Si=[s1

i , s2
i , ..., smi&1

i , smi
i ]. S=S1_ } } } _Sn is the Cartesian

product of the individual strategy spaces and is the strategy space of the game.
si # Si denotes a strategy of player i, and is therefore an element of S i . s=
(s1 , ..., sn) # S is a strategy combination, and it consists of n strategies, one for each
player. s&i=(s1 , ..., si&1 , si+1 , ..., sn) is a strategy combination of all players except
i. S&i has a cardinality of m&i=>n

j=1, j{i m j . ? i (si , s&i) is the payoff function of
player i and is scalar valued. Denote the actual strategy chosen by player i in period
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t by si (t), and the strategy (vector) chosen by all other players by s&i (t). Denote
player i 's payoff in a period t by ?i (si (t), s&i (t)).

Learning models require a specification of initial attractions, how attractions are
updated by experience, and how choice probabilities depend on attractions.

2.1. The Updating Rules

The core of the EWA model is two variables which are updated after each round. The
first variable is N(t), which we interpret as the number of ``observation-equivalents''
of past experience. (This number will not generally equal the number of previous
observations, due to depreciation, and other forces.) The second variable is A j

i (t),
the attraction of a strategy after period t has taken place.

The variables N(t) and A j
i (t) begin with some prior values, N(0) and A j

i (0).
These prior values can be thought of as reflecting pregame experience, either due
to learning transferred from different games or due to introspection. (Then N(0) can
be interpreted as the number of periods of actual experience which is equivalent in
attraction impact to the pregame thinking.)

Updating is governed by two rules. First,

N(t)=\ } N(t&1)+1, t�1. (2.1)

The parameter \ can be thought of as a depreciation rate or retrospective discount
factor that measures the fractional impact of previous experience, compared to one
new period.

The second rule updates the level of attraction. A key component of the updating
is the payoff that a strategy either yielded, or would have yielded, in a period. The
model weights hypothetical payoffs that unchosen strategies would have earned by
a parameter $, and weights payoff actually received, from chosen strategy si (t), by
an additional 1&$ (so they receive a total weight of 1). Using an indicator function
I(x, y) which equals 1 if x= y and 0 if x{ y, the weighted payoff can be written
[$+(1&$) } I(s j

i , si (t)] } ?i (s j
i , s&i (t)).

The rule for updating attraction sets A j
i (t) to be a weighted average of the

(weighted) payoff from period t and the previous attraction A j
i (t&1), according to:

A j
i (t)=

, } N(t&1) } A j
i (t&1)+[$+(1&$) } I(s j

i , si (t)] } ?i (s j
i , s&i (t))

N(t)
. (2.2)

The factor , is a discount factor that depreciates previous attraction.

2.2. Choice Reinforcement

In choice reinforcement models, reinforcement levels are increased by payoffs of
chosen strategies. (In some approaches, choice probabilities are affected directly but
we ignore those approaches here.) Denote the initial reinforcement level of strategy
j of player i R j

i (0). Reinforcements are updated according to

R j
i (t)=, } R j

i (t&1)+I(s j
i , si (t)) } ?i (s j

i , s&i (t)). (2.3)
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This basic model allows previous reinforcements to ``depreciate'' or ``decay'' by a
factor , (similar to a retrospective discount factor), and updates chosen strategies
according to their payoffs. It captures the property that strategies with positive
payoffs increase in relative reinforcement. It is easy to see that the reinforcement
updating formula is a special case of the EWA rule (2.2) when R j

i (0)=A j
i (0), $=0,

N(0)=1, and \=0.

2.3. Belief-Based Models

Adaptive players are those who base their responses on beliefs formed by observ-
ing the history of others. While there are many ways of forming beliefs, we consider
a fairly large class of models, which include familiar ones like fictitious play
(Brown, 1951) and Cournot best-response (Cournot, 1960) as special cases.

We consider models in which prior beliefs of opponents' strategy combinations
are expressed as a ratio of hypothetical counts of observations of strategy combination
sk

&i , denoted by Nk
&i (0), which sum to N(t)=�m&i

k=1 Nk
&i (t). (N(t) is not subscripted

because the count of frequencies is assumed, in our estimation, to be the same for
all players.) These observations can then be naturally integrated with actual obser-
vations as experience accumulates. Furthermore, we assume that past experience is
depreciated or discounted by a factor \. Note that Then, the initial prior Bk

&i (0)=
Nk

&i (0)�N(0). Beliefs are updated by depreciating the previous counts by \, and
adding one for the strategy combination actually chosen by the other players. That
is,

Bk
&i (t)=

\ } N k
&i (t&1)+I(sk

&i , s&i (t))
�m&i

h=1 [\ } N h
&i (t&1)+I(sh

&i , s&i (t))]
. (2.4)

Expressing beliefs Bk
&i (t) in terms of previous-period beliefs Bk

&i (t&1) gives

Bk
&i (t)=

\ } N(t&1) } Bk
&i (t&1)+}I(sk

&i , s&i (t))
\ } N(t&1)+1

. (2.5)

Expected payoffs in period t are computed by E j
i (t)=�m&i

k=1 ?i (s j
i , sk

&i) } Bk
&i (t). The

key step is that expected payoffs in period t can be expressed as a function of period
t&1 expected payoffs, according to

E j
i (t)=

\ } N(t&1) } E j
i (t&1)+?(s j

i , s&i (t))
\ } N(t&1)+1

. (2.6)

Suppose initial attractions A j
i (0) are equal to expected payoffs, given initial

beliefs which arise from the ``experience�equivalent'' strategy counts N k
&i (0). Then

comparing equation (2.6) with (2.2), it is evident that substituting $=1 and \=,
into the attraction updating equation (2.2) gives EWA attractions which are equal
to updated expected payoffs using weighted fictitious play.

309EWA LEARNING IN COORDINATION GAMES



Weighted fictititious play includes Cournot dynamics in which only the most
recent choice by one's opponent matters (,=0) and fictitious play, in which players
take an equally-weighted average of all previous observations (,=1).

2.4. Choice Probabilities

So far we have said nothing about how the probability of player i choosing
strategy j at time t, P j

i (t), depends on the attraction A j
i (t). Obviously we would like

P j
i (t) to be monotonically increasing in A j

i (t) and decreasing in Ak
i (t) (where k{j).

In this paper, we use both logit and power probability response functions:

P j
i (t+1)=

e* } Ai
j(t)

�mi
k=1 e* } Ai

k (t)
(2.7)

P j
i (t+1)=

(A j
i (t))*

�mi
k=1 (Ak

i (t))* . (2.8)

The parameter * measures sensitivity of players to attractions. Sensitivity could
vary due to psychophysical concerns or whether subjects are highly motivated or
not. In their work on quantal response equilibrium (QRE), McKelvey and Palfrey
(1995, 1996) extend standard equilibrium notions to include the complication that
players respond with ``error'' (and realize others respond with error too).

Each probability function has advantages and disadvantages. The logit form is
popular for studying discrete choice, choice among consumer products, etc. (e.g.,
Anderson, de Palma, Thisse, 1992). The logit form has been used to study learning
in games by Mookerjhee and Sopher (1994, 1997), Ho and Weigelt (1996), and
Fudenberg and Levine (in press). It is also used in ``quantal response equilibrium''
models by McKelvey and Palfrey (1995, 1996). The logit form is invariant to add-
ing a constant to all attractions. (As a result, one must normalize A j

i (0) for one
value of j when doing estimation.) In the logit form, negative values of A j

i (0) are
permissible, which means one can avoid the difficult question of how to update
attractions when payoffs are negative.

The power form has been used (among others) by Tang (1996) and the special
case *=1 has been used by Erev and Roth (1997). The power form (with any *)
is invariant to multiplying all attractions by a constant. Because of this invariance,
the parameters \ and N(0) make no difference when the power form is used.1 Thus,
invariance to multiplication in the power form means that the distinction between
the attraction levels A j

i (0) and the ``weight'' on initial attractions, N(0), is
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probabilities). While initial choice probabilities depend on A j

i (0) only, these probabilities are the same
as those that depend on A j

i (0) } N(0) (for N(0)>0). As a result, multiplying the initial attractions by an
arbitrary constant makes no difference (econometrically, N(0) is not identifiable). Alternatively, one can
fix one of the values of A j

i (0) and let N(0) be determined by the data.



meaningless. In the power form, negative values of A j
i (0) are not permitted.

Ultimately, it is an empirical question whether the exponential or power forms fit
better. In the estimation we below we fit both power and exponential forms and
compare them.

3. INTERPRETING THE EWA MODEL

Before turning to the estimation results, it is instructive to ask how the EWA
parameters can be interpreted. In our view, sensible interpretations of the
parameters are important in judging how good a model is. Parameters with natural
interpretations can be measured in other ways and theorized about (by a broader
range of social scientists) more fruitfully.

3.1. EWA Parameters

1. Imagination $: The parameter $ can be interpreted as a combination of
information about foregone outcomes, and the ability to imagine them (cf. Van
Huyck, Battalio, and Rankin, 1996, esp. p. 16). When $=1, the incremental weight
to the actual payoff, 1&$, is zero; hypothetical or imaginary payoffs have equal
cognitive weight. In EWA, foregone payoffs have weight $, which expresses the
principle of simulated effect (if $ is positive). But actual payoffs have an additional
weight 1&$, which incorporates the principle underlying the law of effect.

A good way to understand EWA, and compare it to other approaches, is to ask
how players change strategies if they do change them at all. The key function of $
is to point players in the direction of better strategies. Holding aside depreciation
of previous attractions, the tendency of a player to switch to strategies s j

i will
depend on $ } ?(s j

i , s&i (t))&?(s i (t), s&i (t)). This quasi-error can be written as
$ } (?(s j

i , s&i (t))&?(s i (t), s&i (t)))&(1&$) } ?(s i (t), s&i (t)). This is a kind of error-
correction model in which players switch to strategies if a fraction $ of the ex post
error (?(s j

i , s&i (t))&?(s i (t), s&i (t))) is greater than a fraction 1&$ of the payoff to
the currently-chosen strategy. Intuitively, players will switch to an unchosen
strategy only if there is large enough added payoff to doing so (or, equivalently, a
reduction in ex post error), above and beyond a fraction of the currently-received
payoff.2 This form also shows how responsiveness to ex post error depends directly
on $& when $ is small, players are more responsive to chosen-strategy payoff than
to error; when $ is large, they are more responsive to error.

Some versions of choice reinforcement allow strategy switches to be somewhat
predictable, by ``spilling over'' reinforcement from a chosen strategy to its neighbors
(e.g., Roth 6 Erev, 1995). This ``generalization'' predicts that players will switch to
nearby strategies (or similar ones, e.g., Sarin 6 Vahid, 1997), but not in a way that
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depends on prospective payoffs of those strategies. In the coordination game data,
local generalization fits much worse than the foregone payoff weighting by $.3

In the belief-based case $=1 so players simply switch to the strategies with the
highest foregone payoffs. This is very similar to ``learning direction'' theory (Selten
6 Buchta, 1994), which says that when strategies are ordered, players will move in
the direction of the ex post best response.

2. Depreciation rates , and \: The parameter , can be naturally interpreted
as depreciation of past attractions, A(t). The parameter \ depreciates the experience
measure N(t). It captures something like decay in the strength of prior beliefs,
which is generally different than decay of early attraction (captured by ,). In a
game-theoretic context, \ and , might be related to the degree to which players
realize other players are adapting, so that old observations on what others did
become less and less useful. Then \ and , are like indices of perceived non-
stationarity.

One way to interpret \ and , is by considering the numerator and denominator
of the main EWA updating equation (2.2) separately, and thinking about how re-
inforcement and belief-based models use these two terms differently. The top term
is , } N(t&1) } A j

i (t&1)+[$+(1&$) } I(s j
i , si (t)] } ?i (s j

i , s&i (t)). This term is like a
running total of (depreciated) attraction, updated by each period's payoffs. The
bottom term is \ } N(t&1)+1. This term is like a running total of (depreciated)
periods of experience-equivalence. Reinforcement models essentially keep track of
the running total in the numerator, and do not adjust for the number of periods of
experience-equivalence (since \=0, the denominator is always one). Belief-based
models also keep track of the attraction total but divide the total number of periods
of experience-equivalence. By depreciating the two totals at the same rate (\=,),
the belief-based models keeps the ``per-period'' attractions (expected payoffs) in a
range bounded by the game's payoffs.

An analogy might help illustrate our point. Instead of determining attractions of
strategies, think about evaluating a person (for example, an athlete, or a senior
colleague you might hire) based on a stream of lifetime performances. The reinfor-
cement model evaluates people based on (depreciated) lifetime performance. The
belief-based models evaluate people based on ``average'' (depreciated) performance.
Both statistics are probably useful in evaluation��in hiring a colleague or
an athlete, you would want to know lifetime performance and some kind of
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used in EWA. The estimates of = are .63 and .64 (two segments) and .61 (one segment) for median-action
games, and .99 and .97 (two segments) and .88 (one segment) for weak-link games. These figures are
higher than the value of .05 used by Roth and Erev (1995).



performance averaged across experience. One way to mix the two is to normalize
depreciated cumulative performance by depreciated experience, but depreciate the
amount of experience more rapidly. For example, if two people perform equally
well on average, a person with 10 years of experience is rated somewhere between
equally as good and twice as good as the person with five years of experience.
When ,>\, EWA models players who use something in between ``lifetime'' perfor-
mance and ``average'' performance to evaluate strategies.

3. Initial attraction and weight A j
i (0), N(0): The term A j

i (0) represents the
initial attraction, which might be derived from some analysis of the game (e.g.,
equilibrium analysis, selection principles, or decision rules like insufficient reason
and maximin). Indeed, any theory of first-period play can be tested empirically as
a restriction on initial attractions. Attractions also could be influenced by similarity
between current strategies and strategies which were successful in similar games, etc.

The term N(0) represents the strength of initial attractions, and can be inter-
preted as the unit-for-unit relative weight of prior ``experience'' (or introspection)
compared to actual payoff experience.

3.2. Time Variation

Players may modify the ways they learn over time. Since the EWA model con-
tains different learning models as special cases, by allowing the learning parameters
to vary, we can also capture smooth rule changes. A more direct approach is
to assume that players consider a large class of rules and shift weight to those
which perform well (as in Tang, 1996, ``method learning'' and Stahl, 1996). The
rule-learning approach has the advantage of endogeneizing the way in which
parameters change in response to experience, which we do not do. Our approach
is simply a first look at whether allowing parameters to vary is empirically useful.
If not, this suggests that a fixed-parameter specification is a useful approximation.
If so, we can explore more detailed specifications of why parameters change, as
Stahl does.

There are several plausible reasons why parameters may vary over time. The
value of $ could increase over time if players learn to simulate foregone payoffs
better, or gradually pay more attention to foregone payoffs (as if they gradually switch
from reinforcement to belief learning). Alternatively, one can interpret the rise in $
as players learning to penalize ex post mistakes more heavily. Suppose the decay
parameters , and \ capture the players' perceptions of the degree of nonstationarity
in the environment��for example, these decay rates lower when players realize that
other players are changing more rapidly. Then as convergence occurs and environ-
ments become more stationary, , and \ will increase. If players get more sensitive
to differences in attractions over time, then * will rise across periods.

With these psychological motivations for time-variation in mind, we allow
the four learning parameters to vary according to a compact exponential form.
Denoting each parameter by X, we estimate the forms Xt=X0 } egX } t (with
X # [$, ,, \, *]), where gX is the rate of parameter change.
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3.3. Heterogeneity

For analytical tractability, standard economic analysis often adopts a``represen-
tative agent approach'' in which all economic agents are treated identically. Of
course, people are different. For example, prior research on games and decisions
has shown that players are identifiably different in their levels of sophistication or
decision rules (Holt, 1991; Stahl, 1993; Ho, Camerer, 6 Weigelt, in press).

We think the right approach to allowing heterogeneity is to allow various ``latent
classes'' or segments of players. An extreme form of this approach is to allow each
individual to have separate parameter values, and estimate each person's
parameters from their data. For the games we study we simply do not have enough
data per person to do this. Cheung and Friedman (1997) have done so for weighted
fictitious play. They reject the hypothesis that all players are the same. However,
their results suggest that reliably estimating individual differences is not easy.4

Notice that the individual-specific parameter approach is only the best approach if
players are not merely different, but also unique (i.e., each player is different from
all others).

Since players are probably not all the same, and not all unique, the best
approach is probably an intermediate one in which players are assumed fall into
one of several discretely-distributed segments or subpopulations (e.g., Crawford,
1995). Each member of a segment has the same parameter values, but each
segment's values differ from the others.

This segmentation approach has three advantages. First, it is more parsimonious
than the first approach and easy to implement computationally. Second, the idea
that people fall into a discrete number of segments is appealing and widely used in
various applications. For example, in personality psychology, people are often
classified into a small number of classes based on bundles of correlated traits, or
classified by cognitive ``styles''. Clinical psychologists describe ``syndromes'' charac-
terized by appearance of a cluster of symptoms. Research in marketing has shown
that economic agents often differ in their preferences and in the ways they select
products (Kamakura 6 Russell, 1987), and can be grouped into market segments.
Third, it is natural to ask whether EWA fits substantially better than a population
mixture of reinforcement learners and belief-based learners. A two-segment analysis
can answer this question (as we do below), by comparing the fit of an EWA model
with two segments to a model in which one of those segments has reinforcement
parameters and the other segment has belief parameters.

4. PARAMETER ESTIMATION FROM EXPERIMENTAL DATA

We estimated the values of model parameters from two coordination games
called ``weak-link'' and median-action games. We picked coordination games
because the results clearly highlight the differences between choice reinforcement
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($=0), the belief models ($=1), and the more general EWA approach. Further-
more, players will be heterogeneous if they use different selection principles or begin
with high attractions on different equilibria.

4.1. The Likelihood Function

In both games subjects have seven strategies, numbers 1�7. Thus, the log of the
likelihood function for the one-segment EWA model without time-variation is

LL(A1(0), ..., A7(0), $, ,, *, N(0), \)= :
n

i=1

:
T

t=1

log(PSi (t)
i (t)). (4.1)

The probabilities PSi (t)
i (t) are given by equation (2.7) and (2.8).5 Initial attractions

are estimated and subsequent attractions are updated according to equation (2.2).
The initial experience-weight N(0) is estimated, and subsequent values N(t) for t>1
are updated according to equation (2.1).

In the logit probability response function, one of the initial attractions must be
fixed for identifiability��we set A5=1��because the probabilities P j

i (t) are invariant
to adding a constant to all attractions. Similarly, in the power probability response
function N(0) must be fixed (and \ disappears) because the probabilities are
invariant to multiplying initial attractions by a constant. This baseline model has
11 free parameters for the logit form and 10 for the power form (which drops \).
The two-segment models double the number of free parameters plus adds one to
measure the fraction of players in each segment.

An alternative method which has occasionally been used to evaluate model fit is
to simulate choice paths, given some model parameters, and compare averaged
simulated paths with the data (McAllister, 1992; Erev 6 Roth, 1997). The accuracy
of the model can be measured by squaring the deviation between the actual and
simulated choice proportions in each period, and averaging those squared deviations
across all the choices and periods, giving a mean squared deviation (MSD). There is no
a priori reason to expect that model parameters which are chosen to minimize MSD in
this way will systematically deviate from maximum-likelihood estimates.6

For the purpose of comparing the evaluation of models using MSD of simulated
paths with MLE evaluation, we simulated paths for the five models described below
which used the exponential probability form. Each of 1000 simulations took the
MLE parameter estimates as the basis for simulation. Each period, MLE
parameters imply a predicted choice probability, which are used to randomly
simulate behavior of each of several artificial players in a group. The behavior of
a group of players determines an order statistic (minimum or median) which deter-
mines each simulated player's payoff. These simulated payoffs are used to update
their attractions, and hence determine choice probabilities, iteratively. Then total
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parameter vector with the lowest MSD, is a computationally inefficient method compared to gradient
algorithms used in MLE packages.



choice proportions are averaged across the 1000 simulations. For the two-segment
results, each player's segment membership was determined randomly and fixed
throughout 1000 simulations. To control for sampling variation across determination
of the segments, the random drawing of segment membership was simulated 20
times, for a total of 20,000 simulations.

4.2. Weak-Link Coordination Games

Weak-link games are n-person versions of stag hunt. In the weak-link games we
study, players choose a strategy from some ordered set, and their payoff depends
positively on the lowest strategy picked by any player, and negatively on the
difference between their strategy and the lowest one. This game was first studied
experimentally by Van Huyck, Battalio and Beil (1990). We use the data collected
by Knez and Camerer (1996) and Camerer, Knez, and Weber (1996) on this game.
The weak-link game captures social situations in which a group's output is
extremely sensitive to its ``weakest link''�friends must wait for the slowest arrival
before they all get seated in a restaurant, a chemical recipe or meal is ruined by one
bad ingredient, a dyke bursts if it has a single leak, etc.

Figure 1 shows payoffs in the weak-link games. Players pick a number from 1 to
7. Player i 's payoff from choosing xi (in dollars) is 0.60+0.10 } min(x1 , x2 , ..., xn)&
0.10 } (xi&min(x1 , x2 , ..., xn)).

FIGURE 1
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We pool data from three subject pools��UCLA, University of Chicago, and
Caltech undergraduates��playing in groups of three. We assume that players care
only about the minimum of others' numbers (since only that statistic, and their own
choice, are relevant for their payoffs). Put differently, they are assumed to treat the
other two players as a composite whose minimum is the composite's strategy
choice. In the Chicago experiments subjects were told only the minimum choice in
the entire group (including their own). In the Caltech and UCLA experiments
subjects were told the choices of both other players in the group (so they could
compute the minimum of others' choices exactly).

The data have a wide dispersion in first-period choices, with a large percentage
of choices of 7 (the payoff�dominant equilibrium). Over time, there is some trend
away from larger numbers 4�5 and toward smaller numbers (particularly 1�2), so
there is evidence of learning which models should be able to capture.

Also, players frequently switched their strategies to strategies they had never
picked before, which were best-responses to the observed minima. For example,
consider a player who chooses 7 and observes a minimum of 5. The player earns
a payoff of 8.90 but would have earned 81.10 if she had chosen 5. We frequently see
players' best-responding to the previous minima, switching from 7 to 5. These
switches are hard to explain unless unchosen strategies are reinforced according to
foregone payoffs and $ is substantially different from zero.

4.3. Median-Action Games

In another order-statistic coordination game that is closely related to the weak-
link game, the group payoff depends the median of all players' actions instead of
the minimum. Players earn a payoff which increases in the median, and decreases
in the (squared) deviation from the median. These median-action games were first
studied experimentally by Van Huyck, Battalio, and Beil (VHBB, 1991).

The median-action games capture social situations in which conformity pressures
induce people to behave like others do, but everyone prefers the group to choose
a high median. Figure 2 shows the game matrix (corresponding to the 1 treatment
in VHBB).

We estimate EWA, choice reinforcement, and belief-based models using sessions
1�6 from VHBB. In their experiments groups of nine subjects each play ten periods
together. We pool together treatments using nine-person groups and ``dual market''
(dm) treatments in which players play with a nine-person group and a twenty-seven
person group simultaneously. In each round players choose an integer from 1 to 7,
inclusive. At the end of each round the median is announced and players compute
their payoffs. Since the groups are large, we assume that players form beliefs over
the median of all players, ignoring their own influence and treating the group as a
composite single player.

The results show initial choices are concentrated around 4�5, with a small spike
at 7. Later choices move sharply toward the initial medians, which were always 4
or 5. There is strong path-dependence: The 10th-round median in every session was
equal to the first-round median.

317EWA LEARNING IN COORDINATION GAMES



FIGURE 2

4.4. Estimtion Results

Tables 1�2 report the results of estimates from weak-link and median-action
games. The first 8 rows report log likelihoods for every possible combination of
power vs exponential forms, one- and two-segments, and no time-variation vs time-
variation. The last three rows report various two-segment models in which the
segments are two segments of choice reinforcement, two segments of beliefs, or a
mixture of one segment of reinforcement and one segment of beliefs.

The findings are organized as a series of answers to questions. Tables 3�5 sum-
marize comparisons of the specifications in Tables 1�2 which provide the answers.

1. Which fits better: Power or exponential?

The answer is that exponential fits better in general. The power form has one
fewer free parameter because probabilities in that form only depend on ratios of
attractions; then the denominator of the updating equations disappears and the
experience decay rate \, which only appears in the denominator, does not matter.
However, the power form and the logit form are not nested so a simple /2 statistic
cannot be used to compare them.
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TABLE 1

Maximum Likelihood for Various Models, Weak-Link Games (N=645)

Model Number of Probability Time Number of
number segment law varying parameters -LL

[1] 1 Power No 10 821.2
[2] 1 Power Yes 13 816.1
[3] 1 Logit No 11 814.0
[4] 1 Logit Yes 15 806.6
[5] 2 Power No 21 819.2
[6] 2 Power Yes 27 786.1
[7] 2 Logit No 23 794.7
[8] 2 Logit Yes 31 775.2
[9]

CR+BB 2 Logit Yes 23 796.7
[10]

CR+CR 2 Logit Yes 23 821.0
[11]

BB+BB 2 Logit Yes 23 894.8

Therefore, we compare the logit and power forms using ``information criteria''
which adjust goodness-of-fit for varying degrees of freedom, subtracting a ``penalty''
from log likelihood for each degree of freedom used. There a variety of criteria, but
we use two well-known ones��the Akaike criterion, with a penalty of 1, and the
Bayesian information criterion with a penalty of ln(N ) where N is the sample size.
Of non-Bayesian criteria, the Akaike criterion imposes the largest penalty (others
propose penalties of 0.75, 0.50, and 0.345; see Harless 6 Camerer, 1994). Thus,

TABLE 2

Maximum Likelihood for Various Models, Median Effort Games (N=540)

Model Number of Probability Time Number of
number segment law varying parameters -LL

[1] 1 Power No 10 347.9
[2] 1 Power Yes 13 347.4
[3] 1 Logit No 11 344.0
[4] 1 Logit Yes 15 337.3
[5] 2 Power No 21 340.0
[6] 2 Power Yes 27 327.9
[7] 2 Logit No 23 325.2
[8] 2 Logit Yes 31 320.1
[9]

CR+BB 2 Logit Yes 23 436.5
[10]

CR+CR 2 Logit Yes 23 388.3
[11]

BB+BB 2 Logit Yes 23 445.8
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TABLE 3

Empirical Tests of Logit vs Power Probability Response Functions

Model Akaike Bayesian
Game Model description comparison criterion criterion

Weak-link
1 segment without time variation [3] vs [1] 6.2 0.7
1 segment with time variation [4] vs [2] 7.5 &3.4
2 segment without time variation [7] vs [5] 22.5 11.6
2 segment with time variation [8] vs [6] 6.9 12.8

Median-action
1 segment without time variation [3] vs [1] 2.9 &2.4
1 segment with time variation [4] vs [2] 8.1 &2.5
2 segment without time variation [7] vs [5] 12.8 2.2
2 segment with time variation [8] vs [6] 3.8 &17.3

compared to other criteria these information criteria favor simpler models (in this
case, the power form).

The difference in log likelihoods of the logit and power forms, adjusted by each
of the two criteria, are shown in Table 3. Positive numbers favor the logit form. The
Akaike criterion favors the logit form in every comparison. The Bayesian criterion,
which applies a bigger penalty to the logit form, is sometimes better for logit and
sometimes better for power. Because the logit form wins overwhelmingly by the
lower-penalty criterion, and the two forms are about equally good by the higher-
penalty criterion, we conclude that in general the logit form is better. Put
differently, the only circumstance under which logit is not better is when the Bayesian
sample-size-dependent penalty is used, and even in that case power and logit are
about equal. This is a stronger result than Tang (1996) and Chen and Tang (1996),
who found the two forms fit about equally well.

While these results favor the logit form, the power and logit forms might be use-
ful for different purposes. Logit enables one to avoid having to tackle the problem
of adjusting for negative attractions. The power form saves degrees of freedom. If
one wants to distinguish the reinforcement and belief cases from EWA (and other
special cases), then the extra distinguishability afforded by N(0) and \ is valuable;
if one is not interested in model comparison then suppressing those factors
eliminates a distraction.

2. Does Heterogeneity Exist?
The answer is Yes. Table 4 shows that in six of eight comparisons, the two-

segment model fits significantly better (at p<0.01) than the one-segment model.
The simulation results for the logit form generally corroborate this conclusion: The
MSDs in weak-link games for one- and two-segment models are 0.0042 and 0.0085
(without time variation) and 0.0043 and 0.0026 (with time variation); the corre-
sponding results for median-action games are 0.0049 and 0.0019, and 0.0141 and
0.0032. The two-segment MSDs are about half as large as those for one-segment
models, except the anomalous case of weak-link games with time variation.
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Table 4 also shows the estimated values of the foregone-payoff-weight parameter
$. The observed heterogeneity is substantial in size and often easily interpretable.
Generally the two estimates of $ in the two-segment model are substantially dif-
ferent (in six of eight cases the difference is larger than 0.15). In every case, the one-
segment $ estimate lies strictly between the pair of two-segment estimates. The
estimated proportions of players in the two segments are usually close to 500.

Estimates from the median-action game tell the most interesting story. One seg-
ment estimate $� is around 0.9 and the other is around 0.5. When time-variation is
allowed in the two-segment model, the higher $ is close to one (0.98 and 0.97) and
constant over time, while the other segment $� is around 0.50 and roughly doubles
over the ten periods, to one. These segments can therefore be interpreted as a seg-
ment of players who weight foregone payoffs as highly as actual payoffs throughout
(like belief learners), and a segment of players who begin weighting foregone
payoffs half as much as actual payoffs, but ``learn'' to weight them equally, as if
switching from an EWA hybrid rule to a belief-based rule.

The two segment $ estimates in the weak-link game are closer together. In one
striking case, power probability with time-variation, the two segments correspond
to a segment of reinforcement learners ($� =0.000) and a segment of belief types
($� =0.884).

3. Is EWA Behaviorally Equivalent to a Mixture of Reinforcement and Belief
Models?

The answer is No. Log likelihoods for the model in which the two segments
correspond to reinforcement and belief learning model are shown in row 9 of Tables
1�2. The /2 statistics comparing this restriction with the most general two-segment
EWA model (using the logit form and time-variation) are /2(8)=232.8 and /2(8)=
43.0 for median and weak link games, respectively. Both statistics are highly signifi-
cant, indicating that EWA is a large improvement over a mixture of reinforcement
and belief segments. Given the results above, this is no surprise because the two-
segment estimates of $ do not generally break neatly into one low value near zero and
another value near one. And inspection of the updating equations makes it apparent
that the EWA attractions are not a linear combination of reinforcements and expected
payoffs. Simulation results corroborate this conclusion: The EWA and combination
model MSDs are 0.0026 and 0.0205 (weak-link) and 0.0032 and 0.0180 (median-
action). EWA has an MSD which is lower by a factor of between five and ten.

4. Does Parameter Time-Variation Matter?
The answer is Slightly. In Table 5, in six out of eight comparisons the /2 statistic

testing the restriction that the time-variation parameters are zero can be rejected at
p<0.01, but the /2 statistics are much smaller than those from tests of hetero-
geneity. The simulation results, however, suggest that evidence for time variation is
very weak because including it often raises the MSD. The MSDs in weak-link
games with and without time variation are 0.0043 and 0.0042 (one segment) and
0.0026 and 0.0085 (two segment); the corresponding statistics for median-action
games are 0.0141 and 0.0050, and 0.0032 and 0.0019. In three of four comparisons,
including time-variation actually raises MSD. It may be that including time variation

323EWA LEARNING IN COORDINATION GAMES



is ``overfitting'' in the MLE procedure, which is revealed by then averaging
simulated paths and comparing to the data.

There is is not much interesting regularity in the nature of time-variation. The
value of \ tends to decline over time, as if players become more and more myopic
in looking back at payoff history (perhaps because convergence to equilibrium
means that looking at recent history is sufficient). The estimated payoff sensitivity
* always rises over time in the one-segment cases (the exponent coefficients range
from 0.016 to 0.437). This can be interpreted as evidence that subjects learn to
respond more sensitively to differences in attractions.

5. CONCLUSION

In earlier research we proposed a new model of learning in games. In the EWA
model, strategies have attraction levels which determine their probability of being
chosen. Attractions are updated by weighting lagged attractions by the amount of
``experience-equivalence'' they have and reinforcing a strategy's attraction by the
payoffs actually received, or some fraction $ of the payoff that would have been
received (given the other players' moves). This EWA model includes two prominent
classes of models, choice reinforcement and belief-based models, as special cases. It
shows that belief and reinforcement learning have a common, surprising kinship��
belief learning is exactly the same as generalized reinforcement learning in which all
strategies are reinforced equally, and lagged attractions are experience-weighted and
normalized.

Previous work established that EWA improves on reinforcement and belief learn-
ing, empirically, by combining their best features: The reinforcement approach
allows flexible initial attractions (which are not constrained to arise from prior
beliefs) and the belief approach pushes choices in the direction of ex post best
responses (which reinforcement does not do). It is important to note that EWA
does not average the two approaches, it hybridizes them or forms an optimal com-
bination of features.

In this paper we compared probability response functions and tested for player
heterogeneity and time-variation in parameter values.

First we compared probability functions which take attractions raised to a power
and normalize, with a logit form that exponentiates attractions and normalizes
them. The logit form uses more free parameters, and fits better than the power form
except when a large penalty is applied for the extra degrees of freedom, when the
two fit equally well.

Second, we test whether heterogeneity among players improves fit by allowing
players to come from one of two parametric segments. Allowing two segments
(rather than only one, in earlier work) does improve fit substantially. The analysis
also shows that EWA is not behaviorally equivalent to simply taking a weighted
average of choice reinforcement and belief models.

Finally, parameters were allowed to vary across periods of the experiment. This
improves goodness-of-fit modestly by standard /2 tests and worse by simulating
paths based on parameter estimates. We conclude that fixing parameters across an
experiment is a reasonable approximation.
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