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Redefine statistical significance
We propose to change the default P-value threshold for statistical significance from 0.05 to 0.005 for claims of 
new discoveries.
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The lack of reproducibility of scientific 
studies has caused growing concern 
over the credibility of claims of new 

discoveries based on ‘statistically significant’ 
findings. There has been much progress 
toward documenting and addressing 
several causes of this lack of reproducibility 
(for example, multiple testing, P-hacking, 
publication bias and under-powered 
studies). However, we believe that a leading 
cause of non-reproducibility has not yet 
been adequately addressed: statistical 
standards of evidence for claiming new 
discoveries in many fields of science are 
simply too low. Associating statistically 
significant findings with P <  0.05 results 
in a high rate of false positives even in the 
absence of other experimental, procedural 
and reporting problems.

For fields where the threshold for 
defining statistical significance for new 
discoveries is P <  0.05, we propose a change 
to P <  0.005. This simple step would 
immediately improve the reproducibility of 
scientific research in many fields. Results 
that would currently be called significant 
but do not meet the new threshold should 
instead be called suggestive. While 
statisticians have known the relative 
weakness of using P ≈  0.05 as a threshold 
for discovery and the proposal to lower 
it to 0.005 is not new1,2, a critical mass of 
researchers now endorse this change.

We restrict our recommendation to 
claims of discovery of new effects. We do 

not address the appropriate threshold for 
confirmatory or contradictory replications 
of existing claims. We also do not advocate 
changes to discovery thresholds in fields 
that have already adopted more stringent 
standards (for example, genomics  
and high-energy physics research; see the 
‘Potential objections’ section below).

We also restrict our recommendation 
to studies that conduct null hypothesis 
significance tests. We have diverse views 
about how best to improve reproducibility, 
and many of us believe that other ways of 
summarizing the data, such as Bayes factors 
or other posterior summaries based on 
clearly articulated model assumptions, are 
preferable to P values. However, changing the 
P value threshold is simple, aligns with the 
training undertaken by many researchers, 
and might quickly achieve broad acceptance.

Strength of evidence from P values
In testing a point null hypothesis H0 against 
an alternative hypothesis H1 based on data 
xobs, the P value is defined as the probability, 
calculated under the null hypothesis, that a 
test statistic is as extreme or more extreme 
than its observed value. The null hypothesis 
is typically rejected — and the finding is 
declared statistically significant — if the  
P value falls below the (current) type I error 
threshold α =  0.05.

From a Bayesian perspective, a more 
direct measure of the strength of evidence 
for H1 relative to H0 is the ratio of their 

probabilities. By Bayes’ rule, this ratio may 
be written as:
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where BF is the Bayes factor that represents 
the evidence from the data, and the prior 
odds can be informed by researchers’ beliefs, 
scientific consensus, and validated evidence 
from similar research questions in the same 
field. Multiple-hypothesis testing, P-hacking 
and publication bias all reduce the credibility 
of evidence. Some of these practices reduce 
the prior odds of H1 relative to H0 by 
changing the population of hypothesis tests 
that are reported. Prediction markets3 and 
analyses of replication results4 both suggest 
that for psychology experiments, the prior 
odds of H1 relative to H0 may be only about 
1:10. A similar number has been suggested 
in cancer clinical trials, and the number 
is likely to be much lower in preclinical 
biomedical research5.

There is no unique mapping between 
the P value and the Bayes factor, since the 
Bayes factor depends on H1. However, the 
connection between the two quantities 
can be evaluated for particular test 
statistics under certain classes of plausible 
alternatives (Fig. 1).
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A two-sided P value of 0.05 corresponds 
to Bayes factors in favour of H1 that range 
from about 2.5 to 3.4 under reasonable 
assumptions about H1 (Fig. 1). This 
is weak evidence from at least three 
perspectives. First, conventional Bayes factor 
categorizations6 characterize this range as 
‘weak’ or ‘very weak’. Second, we suspect 
many scientists would guess that P ≈  0.05 
implies stronger support for H1 than a Bayes 
factor of 2.5 to 3.4. Third, using equation (1)  
and prior odds of 1:10, a P value of 0.05 
corresponds to at least 3:1 odds (that is, the 
reciprocal of the product × .3 41

10
) in favour 

of the null hypothesis!

Why 0.005
The choice of any particular threshold is 
arbitrary and involves a trade-off between 
type I and type II errors. We propose 0.005 
for two reasons. First, a two-sided P value of 
0.005 corresponds to Bayes factors between 
approximately 14 and 26 in favour of H1. 
This range represents ‘substantial’ to ‘strong’ 

evidence according to conventional Bayes 
factor classifications6.

Second, in many fields the P <  0.005 
standard would reduce the false positive rate 
to levels we judge to be reasonable. If we let ϕ 
denote the proportion of null hypotheses that 
are true, 1 – β the power of tests in rejecting 
false null hypotheses, and α the type I  
error/significance threshold, then as the 
population of tested hypotheses becomes large, 
the false positive rate (that is, the proportion 
of true null effects among the total number 
of statistically significant findings) can be 
approximated by:

αϕ
αϕ β ϕ

≈
+ − −

False positive rate
(1 )(1 )

(2)

For different levels of the prior odds 
that there is a true effect, ϕ

ϕ
−1 , and for 

significance thresholds α =  0.05 and  
α =  0.005, Fig. 2 shows the false positive  
rate as a function of power 1− β.

In many studies, statistical power is low7. 
Figure 2 demonstrates that low statistical 
power and α =  0.05 combine to produce 
high false positive rates.

For many, the calculations illustrated by 
Fig. 2 may be unsettling. For example, the 
false positive rate is greater than 33% with 
prior odds of 1:10 and a P value threshold 
of 0.05, regardless of the level of statistical 
power. Reducing the threshold to 0.005 
would reduce this minimum false positive 
rate to 5%. Similar reductions in false 
positive rates would occur over a wide range 
of statistical powers.

Empirical evidence from recent 
replication projects in psychology and 
experimental economics provide insights 
into the prior odds in favour of H1. In both 
projects, the rate of replication (that is, 
significance at P <  0.05 in the replication in 
a consistent direction) was roughly double 
for initial studies with P <  0.005 relative to 
initial studies with 0.005 <  P <  0.05: 50% 
versus 24% for psychology8, and 85% versus 
44% for experimental economics9. Although 
based on relatively small samples of studies 
(93 in psychology, and 16 in experimental 
economics, after excluding initial studies 
with P >  0.05), these numbers are suggestive 
of the potential gains in reproducibility  
that would accrue from the new threshold 
of P <  0.005 in these fields. In biomedical 
research, 96% of a sample of recent papers 
claim statistically significant results with  
the P <  0.05 threshold10. However, 
replication rates were very low5 for these 
studies, suggesting a potential for gains  
by adopting this new standard in these  
fields as well.

Potential objections
We now address the most compelling 
arguments against adopting this higher 
standard of evidence.

The false negative rate would become 
unacceptably high. Evidence that does not 
reach the new significance threshold should 
be treated as suggestive, and where possible 
further evidence should be accumulated; 
indeed, the combined results from several 
studies may be compelling even if any 
particular study is not. Failing to reject the 
null hypothesis does not mean accepting  
the null hypothesis. Moreover, the false 
negative rate will not increase if sample  
sizes are increased so that statistical power  
is held constant.

For a wide range of common statistical 
tests, transitioning from a P value threshold of 
α =  0.05 to α =  0.005 while maintaining 80% 
power would require an increase in sample 
sizes of about 70%. Such an increase means 
that fewer studies can be conducted using 
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Fig. 1 | relationship between the P value and the Bayes factor. The Bayes factor (BF) is defined 
as f x H
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. The figure assumes that observations are independent and identically distributed 

(i.i.d.) according to x ~ N(μ,σ2), where the mean μ is unknown and the variance σ2 is known. The P value 
is from a two-sided z-test (or equivalently a one-sided χ1

2-test) of the null hypothesis H0: μ =  0. Power 
(red curve): BF obtained by defining H1 as putting ½ probability on μ =  ± m for the value of m that gives 
75% power for the test of size α =  0.05. This H1 represents an effect size typical of that which is implicitly 
assumed by researchers during experimental design. Likelihood ratio bound (black curve): BF obtained 
by defining H1 as putting ½ probability on μ =  ± ̂x, where ̂x is approximately equal to the mean of the 
observations. These BFs are upper bounds among the class of all H1 terms that are symmetric around the 
null, but they are improper because the data are used to define H1. UMPBT (blue curve): BF obtained by 
defining H1 according to the uniformly most powerful Bayesian test2 that places ½ probability on μ =  ± 
w, where w is the alternative hypothesis that corresponds to a one-sided test of size 0.0025. This curve 
is indistinguishable from the ‘Power’ curve that would be obtained if the power used in its definition was 
80% rather than 75%. Local-H1 bound (green curve): =

−
BF

ep p
1
ln , where p is the P value, is a large-sample 

upper bound on the BF from among all unimodal alternative hypotheses that have a mode at the null and 
satisfy certain regularity conditions15. The red numbers on the y axis indicate the range of Bayes factors 
that are obtained for P values of 0.005 or 0.05. For more details, see the Supplementary Information.
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current experimental designs and budgets.  
But Fig. 2 shows the benefit: false positive rates 
would typically fall by factors greater than 
two. Hence, considerable resources would be 
saved by not performing future studies based 
on false premises. Increasing sample sizes 
is also desirable because studies with small 
sample sizes tend to yield inflated effect size 
estimates11, and publication and other biases 
may be more likely in an environment of small 
studies12. We believe that efficiency gains 
would far outweigh losses.

The proposal does not address multiple-
hypothesis testing, P-hacking, publication 
bias, low power, or other biases (for 
example, confounding, selective  
reporting, and measurement error), 
which are arguably the bigger problems. 
We agree. Reducing the P value threshold 
complements — but does not substitute  
for — solutions to these other problems, 
which include good study design, ex 
ante power calculations, pre-registration 
of planned analyses, replications, and 
transparent reporting of procedures and all 
statistical analyses conducted.

The appropriate threshold for statistical 
significance should be different for 
different research communities. We agree 
that the significance threshold selected for 
claiming a new discovery should depend 
on the prior odds that the null hypothesis is 
true, the number of hypotheses tested, the 
study design, the relative cost of type I versus 

type II errors, and other factors that vary by 
research topic. For exploratory research with 
very low prior odds (well outside the range 
in Fig. 2), even lower significance thresholds 
than 0.005 are needed. Recognition of this 
issue led the genetics research community 
to move to a ‘genome-wide significance 
threshold’ of 5 ×  10–8 over a decade ago. And 
in high-energy physics, the tradition has long 
been to define significance by a ‘5-sigma’ 
rule (roughly a P value threshold of 3 ×  10–7). 
We are essentially suggesting a move from a 
2-sigma rule to a 3-sigma rule.

Our recommendation applies to 
disciplines with prior odds broadly in the 
range depicted in Fig. 2, where use of P <  0.05  
as a default is widespread. Within those 
disciplines, it is helpful for consumers of 
research to have a consistent benchmark. We 
feel the default should be shifted.

Changing the significance threshold is a 
distraction from the real solution, which 
is to replace null hypothesis significance 
testing (and bright-line thresholds) with 
more focus on effect sizes and confidence 
intervals, treating the P value as a 
continuous measure, and/or a Bayesian 
method. Many of us agree that there are 
better approaches to statistical analyses  
than null hypothesis significance testing,  
but as yet there is no consensus regarding 
the appropriate choice of replacement.  
For example, a recent statement by the 
American Statistical Association addressed 
numerous issues regarding  

the misinterpretation and misuse of  
P values (as well as the related concept  
of statistical significance), but failed to  
make explicit policy recommendations to 
address these shortcomings13. Even after  
the significance threshold is changed,  
many of us will continue to advocate  
for alternatives to null hypothesis 
significance testing.

Concluding remarks
Ronald Fisher understood that the choice of 
0.05 was arbitrary when he introduced it14. 
Since then, theory and empirical evidence 
have demonstrated that a lower threshold 
is needed. A much larger pool of scientists 
are now asking a much larger number of 
questions, possibly with much lower prior 
odds of success.

For research communities that continue 
to rely on null hypothesis significance 
testing, reducing the P value threshold 
for claims of new discoveries to 0.005 is 
an actionable step that will immediately 
improve reproducibility. We emphasize that 
this proposal is about standards of evidence, 
not standards for policy action nor standards 
for publication. Results that do not reach 
the threshold for statistical significance 
(whatever it is) can still be important and 
merit publication in leading journals  
if they address important research questions 
with rigorous methods. This proposal 
should not be used to reject publications 
of novel findings with 0.005 <  P <  0.05 
properly labelled as suggestive evidence.  
We should reward quality and transparency 
of research as we impose these more 
stringent standards, and we should monitor 
how researchers’ behaviours are affected  
by this change. Otherwise, science runs  
the risk that the more demanding  
threshold for statistical significance  
will be met to the detriment of quality  
and transparency.

Journals can help transition to the new 
statistical significance threshold. Authors 
and readers can themselves take the 
initiative by describing and interpreting 
results more appropriately in light of the 
new proposed definition of statistical 
significance. The new significance threshold 
will help researchers and readers to 
understand and communicate evidence 
more accurately. ❐
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Supplementary Information: 

Supplementary Text 

R code used to generate Figures 1 and 2 

 

Supplementary Information: 

Supplementary Text 

Figure 1  

All four curves in Figure 1 describe the relationship between (i) a P-value based on a 

two-sided normal test and (ii) a Bayes factor or a bound on a Bayes factor.  The P-values are 

based on a two-sided test that the mean   of an independent and identically distributed sample of 

normally distributed random variables is 0.  The variance of the observations is known.  Without 

loss of generality, we assume that the variance is 1 and the sample size is also 1.  The curves in 

the figure differ according to the alternative hypotheses that they assume for calculating (ii). 

Because these curves involve two-sided tests, all alternative hypotheses are restricted to be 

symmetric around 0.   That is, the density assumed for the value of   under the alternative 

hypothesis is always assumed to satisfy  ( )   (  )  

The curve labeled “Power” corresponds to defining the alternative hypothesis so that power is 

75% in a two-sided 5% test.  This is achieved by assuming that   under the alternative 

hypothesis is equal to  (            )       .  That is, the alternative hypothesis places ½ its 

prior mass on 2.63 and ½ its mass on -2.63.   

The curve labeled UMPBT corresponds to the uniformly most powerful Bayesian test (2) that 

corresponds to a classical, two-sided test of size           The alternative hypothesis for this 

Bayesian test places ½ mass at 2.81 and ½ mass at -2.81.   The null hypothesis for this test is 

rejected if the Bayes factor exceeds 25.7.  Note that this curve is nearly identical to the “Power” 

curve if that curve had been defined using 80% power, rather than 75% power.  The Power curve 

for 80% power would place ½ its mass at        

The Likelihood Ratio Bound curve represents an approximate upper bound on the Bayes factor 

obtained by defining the alternative hypothesis as putting ½ its mass on   ̅, where  ̅ is the 

observed sample mean.  Over the range of P-values displayed in the figure, this alternative 

hypothesis very closely approximates the maximum Bayes factor that can be attained from 

among the set of alternative hypotheses constrained to be of the form       ( )   (  )  for 

some density function f. 

The Local-H1 curve is described fully in the figure caption. A fuller explanation and discussion of 
this bound can be found in ref. 15. 

 

Equation 2 and Figure 2   

This equation defines the large-sample relationship between the false positive rate, power 

   , type I error rate    and the probability that the null hypothesis is true when a large number 

of independent experiments have been conducted.  More specifically, suppose that n independent 

hypothesis tests are conducted, and suppose that in each test the probability that the null 
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hypothesis is true is      If the null hypothesis is true, assume that the probability that it is falsely 

rejected (i.e., a false positive occurs) is  .  For the test          define the random variable 

     if the null hypothesis is true and the null hypothesis is rejected, and      if either the 

alternative hypothesis is true or the null hypothesis is not rejected.  Note that the    are 

independent Bernoulli random variables with   (    )    .  Also for test j, define another 

random variable      if the alternative hypothesis is true and the null hypothesis is rejected, 

and 0 otherwise.   It follows that the    are independent Bernoulli random variables with 

  (    )  (   )(   )   Note that    is independent of    for    , but    is not 

independent of   .  For the n experiments, the false positive rate can then be written as: 

 

     
∑   

 
   

∑    ∑   
 
   

 
   

 
∑     

 
   

∑      ∑     
 
   

 
   

  

 

By the strong law of large numbers, ∑     
 
    converges almost surely to     and ∑     

 
    

converges almost surely to (   )(   )   Application of the continuous mapping theorem 

yields 

 

   
    
→  

  

   (   )(   )
  

 

Figure 2 illustrates this relationship for various values of   and prior odds for the alternative, 
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R code used to generate Figure 1: 

 
type1=.005 

type1Power=0.05 

type2=0.25 

p=1-c(9000:9990)/10000 

xbar = qnorm(1-p/2) 

 

# alternative based on 80% POWER IN 5% TEST 

muPower = qnorm(1-type2)+qnorm(1-type1Power/2) 

bfPow = 0.5*(dnorm(xbar,muPower,1)+dnorm(xbar,-muPower,1))/dnorm(xbar,0,1) 

 

muUMPBT = qnorm(0.9975) 

bfUMPBT = 0.5*(dnorm(xbar,muUMPBT,1)+dnorm(xbar,-

muUMPBT,1))/dnorm(xbar,0,1) 

 

# two-sided "LR" bound 

bfLR = 0.5/exp(-0.5*xbar^2) 

 

bfLocal = -1/(2.71*p*log(p)) 

 

#coordinates for dashed lines 

data = data.frame(p,bfLocal,bfLR,bfPow,bfUMPBT) 

U_005 = max(data$bfLR[data$p=="0.005"]) 

L_005 = min(data$bfLocal[data$p=="0.005"]) 

U_05 = max(data$bfLR[data$p=="0.05"]) 

L_05 = min(data$bfUMPBT[data$p=="0.05"]) 

 

# Local bound; no need for two-sided adjustment 

 

 

#plot margins 

par(mai=c(0.8,0.8,.1,0.4)) 

par(mgp=c(2,1,0)) 

 

matplot(p,cbind(bfLR,-1/(2.71*p*log(p))),type='n',log='xy', 

        xlab=expression(paste(italic(P) ,"-value")), 

        ylab="Bayes Factor", 

        ylim = c(0.3,100), 

        bty="n",xaxt="n",yaxt="n") 

lines(p,bfPow,col="red",lwd=2.5) 

lines(p,bfLR,col="black",lwd=2.5) 

lines(p,bfUMPBT,col="blue",lwd=2.5) 

lines(p,bfLocal,col="green",lwd=2.5) 

legend(0.015,100,c(expression(paste("Power")),"Likelihood Ratio 

Bound","UMPBT",expression(paste("Local-",italic(H)[1]," 

Bound"))),lty=c(1,1,1,1), 

       lwd=c(2.5,2.5,2.5,2.5),col=c("red","black","blue","green"), cex = 

0.8) 

#text(0.062,65, "\u03B1", font =3, cex = 0.9) 

 

#customizing axes 

#x axis 

axis(side=1,at=c(-2,0.001,0.0025,0.005,0.010,0.025,0.050,0.100,0.14), 
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     labels = 

c("","0.0010","0.0025","0.0050","0.0100","0.0250","0.0500","0.1000",""),lw

d=1, 

     tck = -0.01, padj = -1.1, cex.axis = .8) 

#y axis on the left - main 

axis(side=2,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 

c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd=1,las

= 1, 

     tck = -0.01, hadj = 0.6, cex.axis = .8) 

#y axis on the left - secondary (red labels) 

axis(side=2,at=c(L_005,U_005),labels = c(13.9,25.7),lwd=1,las= 1, 

     tck = -0.01, hadj = 0.6, cex.axis = .6,col.axis="red") 

#y axis on the right - main 

axis(side=4,at=c(-0.2, 0.3,0.5,1,2,5,10,20,50,100),labels = 

c("","0.3","0.5","1.0","2.0","5.0","10.0","20.0","50.0","100.0"),lwd=1,las

= 1, 

     tck = -0.01, hadj = 0.4, cex.axis = .8) 

#y axis on the right - secondary (red labels) 

axis(side=4,at=c(L_05,U_05),labels = c(2.4,3.4),lwd=1,las= 1, 

     tck = -0.01, hadj = 0.4, cex.axis = .6,col.axis="red") 

 

###dashed lines 

segments(x0 = 0.000011, y0= U_005, x1 = 0.005, y1 = U_005, col = "gray40", 

lty = 2) 

segments(x0 = 0.000011, y0= L_005, x1 = 0.005, y1 = L_005, col = "gray40", 

lty = 2) 

segments(x0 = 0.005, y0= 0.00000001, x1 = 0.005, y1 = U_005, col = 

"gray40", lty = 2) 

 

segments(x0 = 0.05, y0= U_05, x1 = 0.14, y1 = U_05, col = "gray40", lty = 

2) 

segments(x0 = 0.05, y0= L_05, x1 = 0.14, y1 = L_05, col = "gray40", lty = 

2) 

segments(x0 = 0.05, y0= 0.00000001, x1 = 0.05, y1 = U_05, col = "gray40", 

lty = 2) 
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R code used to generate Figure 2: 

 
 

pow1=c(5:999)/1000   # power range for 0.005 tests 

pow2=c(50:999)/1000  # power range for 0.05 tests 

alpha=0.005 # test size 

pi0=5/6  # prior probability 

N=10^6  # doesn't matter 

 

 

#graph margins 

par(mai=c(0.8,0.8,0.1,0.1)) 

par(mgp=c(2,1,0))   

 

 

plot(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-pi0)*N),type='n',ylim = c(0,1), 

xlim = c(0,1.5), 

     xlab='Power                                      ', 

     ylab='False positive rate', bty="n", xaxt="n", yaxt="n") 

#grid lines 

segments(x0 = -0.058, y0 = 0, x1 = 1, y1 = 0,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.2, x1 = 1, y1 = 0.2,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.4, x1 = 1, y1 = 0.4,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.6, x1 = 1, y1 = 0.6,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 0.8, x1 = 1, y1 = 0.8,lty=1,col = "gray92") 

segments(x0 = -0.058, y0 = 1, x1 = 1, y1 = 1,lty=1,col = "gray92") 

 

 

lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-

pi0)*N),lty=1,col="blue",lwd=2) 

odd_1_5_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

alpha=0.05 

pi0=5/6  

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-

pi0)*N),lty=2,col="blue",lwd=2) 

odd_1_5_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

 

 

alpha=0.05 

pi0=10/11 

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-pi0)*N),lty=2,col="red",lwd=2) 

odd_1_10_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

alpha=0.005 

pi0=10/11 

lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-pi0)*N),lty=1,col="red",lwd=2) 

odd_1_10_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

 

alpha=0.05 

pi0=40/41 

lines(pow2,alpha*N*pi0/(alpha*N*pi0+pow2*(1-

pi0)*N),lty=2,col="green",lwd=2) 

odd_1_40_2 = alpha*N*pi0/(alpha*N*pi0+pow2[950]*(1-pi0)*N) 

alpha=0.005 

pi0=40/41 
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lines(pow1,alpha*N*pi0/(alpha*N*pi0+pow1*(1-

pi0)*N),lty=1,col="green",lwd=2) 

odd_1_40_1 = alpha*N*pi0/(alpha*N*pi0+pow1[995]*(1-pi0)*N) 

 

 

 

 

#customizing axes 

axis(side=2,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 

c("","0.0","0.2","0.4","0.6","0.8","1.0"), 

     lwd=1,las= 1,tck = -0.01, hadj = 0.4, cex.axis = .8) 

axis(side=1,at=c(-0.5,0,0.2,0.4,0.6,0.8,1.0),labels = 

c("","0.0","0.2","0.4","0.6","0.8","1.0"), 

     lwd=1,las= 1, tck = -0.01, padj = -1.1, cex.axis = .8) 

 

 

 

legend(1.05,1,c("Prior odds = 1:40","Prior odds = 1:10","Prior odds = 

1:5"),pch=c(15,15,15), 

       col=c("green","red","blue"), cex = 1) 

 

 

###############  Use these commands to add brackets in Figure 2 

 

library(pBrackets) 

 

 

#add text and brackets 

text(1.11,(odd_1_5_2+odd_1_40_2)/2, expression(paste(italic(P)," < 0.05 

threshold")), cex = 0.9,adj=0) 

text(1.11,(odd_1_5_1+odd_1_40_1)/2, expression(paste(italic(P)," < 0.005 

threshold")), cex = 0.9,adj=0) 

brackets(1.03, odd_1_40_1, 1.03, odd_1_5_1, h = NULL, ticks = 0.5, 

curvature = 0.7, type = 1, 

        col = 1, lwd = 1, lty = 1, xpd = FALSE) 

brackets(1.03, odd_1_40_2, 1.03, odd_1_5_2, h = NULL, ticks = 0.5, 

curvature = 0.7, type = 1, 

         col = 1, lwd = 1, lty = 1, xpd = FALSE) 
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